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FACIAL STRUCTURES FROM THE ORDER - THEORETICAL
POINT OF VIEW

CONSTANTIN P. NICULESCU

The aim of this paper is to outline a large generalization of the convexity
theory, based on the study of certain order relations, geometrically determined.
That will allow us to bring together appearently unrelated facts and results and to
explain the similarity between several domains of functional analysis.

The present paper has been circulated in the early 90's as a preprint, entitled

Lectures of Alfsen - Effros theory.

1. ALFSEN-EFFROS TYPE ORDER RELATIONS

Let E be a Banach space over the field IK (K is R or C).
1.1 DEFINITION (see [N2]). An order relation « on E is said to be of Alfsen-Effros
type (abbreviated, « is an AE-order relation) provided that the following conditions
are satisfied:

AE1l) x « y implies y-x « y;. :

AE2) x « y implies ox « ay for every a €IK;

AE3) 0 <a <P in R implies ox « Bx for every x € E;

ABA) If x; «yp, x, « ypand y; «y; +y, thenx «x, +x, andx, +x, «y, +,;

AES) x + y « 2y implies |[x|| < |ly]|;

AE6) x, « y (a € 4) and |[x, - x|| > 0 implies x « y.

Clearly, the definition above can be adapted in an evident manner for locally
convex spaces with a specified system of seminorms. Also, one can rephrase the
conditions AE1) - AE6) above in terms of codirection by letting

x || y (i.e., x and y are codirectional) if and only if x « x+y.

The next proposition collects immediate consequence of Definition 1.1.

1.2 PROPOSITION. Let E be a Banach space endowed with an AE-order relation
«. Then:

i) 0 « x for every x € E,
i) x « y and -x « y implies x = 0;

iit) x « y implies |jx|| « |Vl

V) x || y implies y || x and ox || By for every a, B = 0.

From Proposition 1.2 i) we infer that an AE-order relation is not
compatible with the linear structure. As we shall show in the next sections the
AE-order relations are very suitable to describe the geometry of the unit ball of
the underlying Banach space.

STUD. CERC. MAT., TOM 47, NR. 5-6, P. 417-451, BUCURESTI, 1995



418 Constantin P. Niculescu 2

1.3 PROPOSITION. .The one-dimensional Banach space K admits only one

AE-order relation, namely
x «y ifand only if x = ay for a suitable a. € [0,1]. :
,eProof. We shall consider here only the complex case. Suppose that rlelel «

«he?, where ry, r,>0and 6,8, € [0, 2m). By proposition 1.2 iii), we obtain r <
r, and condition AE2) above leads us to the case where €' « r for some » 2 1 and
8 e [0, 2m). We have to prove that 8 = 0. '

For, e « r yields e « " for every n € IN, so by AE1) and Proposition 1.1.2
iii) above we obtain | - ¢i"| < 7" (and thus 1- 27" cos nb < O)for every n € N, a
contradiction. ®

1.4 COROLLARY. IfE is a Banach space endowed with an AE-order relation « then

a «PinKandx «yinEimply ox « By.

Deeper examples come in connection with the facial structure of a Banach
space E and they were first considered by Alfsen and Effros [AE]:

x « y if and only if || = ] + |ly - ||

" “(If E is strictly convex this means that the points 0, x, y are colinear and x is between
0 and y);

x «,y if and only if every closed ball containing 0 and y contains also x.
Notice that
x «,y if and only if |pe-z|| < lzl| v |ly-z]| for every z.

The verification of AE1)-AE6) above for «; needs only the triangle inequality;
e.g., AE4) can be deduced as follows. By hypotheses,

Il = Tl + Iy =l Wl = e+ vz =
and [ly,+ vl = I ll + [¥]l. Then
vy + ¥all S Iy + ya - %1 = Xall + by + %l <
<My =yl + Boell + Iy = gl + el <
< Iyyll + all = Iy + 2l

which implies that x; + X, « y; +y, and x; « X} + X,.

The geometric meaning of «, is much more involving. For example, the
condition AE1) means that symmetrical balls contain symmetrical points.

Except for AE4), the fact that «, is indeed an AE-order relation is simply
* routine. As concerns AE4), we know a simple argument only for the following
statement X; < V1, X2 <Yz and ; Yy + Y, implies Xy + X3 g1+ Yo In fact, our
hypotheses are

lbey = 2l < Hlzll v Ty -2l
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lbez = 2l| < izl vy - 2]l
2 - 2l <l vy, + 3,2l

for every z € E. Then by applying succesively these relations, we infer that

lbey +x, -2l < flz - )] v [y + 3y - 2] <
Slelviya -zl viy, -2l v iy +y, -2 <
<l v vy +y, - 2

Le,x;+x, Gyt Y,

The other part of AE4) combines Theorem 1.9 below with the remark that
only the real structure of E is involved in AE4). We shall need some background on
Choquet's theory. The details omited are to be found in [Ph]. Another proof of the
fact that «, is an AE-order relation appears in [NV2].

For K a compact convex subset of a locally convex Hausdorff space Z, we
shall denote by A(K, R) the Banach space (endowed with the sup norm) of all
continuous real affines functions /: K — R.

1.5 LEMMA. For each € > 0 and each h € A(K, R) there exist z' € 7' and

aeRwith|h-(Z'+a)| K| <e.
Proof. Consider the following two subsets of Z x IR:

M, ={(x,r)|x €K, h(x) =r} and M, = {(x, r) | x € K, h(x) = r+).
M, and M, are both compact, convex, non-empty and M, M, = &. By Hahn-
Banach separation theorem, there exist a continuous linear functional Z on Z x IR
and a real number A such that sup L(M;) < A < inf L(M,). Then we can define a
function g on Z by the formula L(x,g(x)) = A i.e., L(x,0) + g(x)-L(0,1) = A. Then
geZlK+Randh<g<h+ge N

1.6 COROLLARY. Let E be a Banach space and K the unit ball of E' endowed
with the w'-topology. Then .

AKR)={x|K+r|xeE, reR).

Let AK) be the set of all probability measures on X. We shall say that a
measure p € HAK) represents the point x of K provided that

w(h) = h(x) for every h € A(K, R).

1.7 LEMMA. 4 point x of K is extremal for K if and only if the only measure
p € AK) which represents x is the Dirac measure concentrated in x.

Given a function f € C(K,IR), we shall denote by f its upper enveloppe,
S @) =inf {h(x) | h € AKR), h>f},x € K.
1.8 LEMMA. For every f € C(K,R),

f (x) = sup {u(f) | u represents x}.
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1.9 THEOREM. Let E be a real Banach space and let Ex E' be the set of all
extreme points of the unit ball K of E'. Then the following assertions are equivalent
for x and y two elements of E:
) x )
ii)x< yv0onKk;
iii) For every e’ € Ex E' either 0 < e(x)<e'(y)ore'(y)<e'(x)<0.

Proof. i) = ii). Let B,(2) be the closed ball in E of center z and radius r > 0.
The fact that v € B,(2) is equivalentto v<z+ron K. Consequently 0 and y belong
to B,(z) ifandonlyif 0 vy<z+r and thus i) is equivalent to the assertion that if
seEandr>0aresuchthat Ovy<z+rthenx<z+r. By Corollary 1.6 above,
every continuous affine majorant of 0 v / has the form z + r, so the latter assertion
is equivalent to ii).

The implication ii) = iii) follows from Lemmata 1.7 and 1.8 above.

i) = 1). Let ZX,,e',, a convex combination of elements ¢', of Ex E'. By
hypotheses, for every n there exists an a,, € [0,1] such that €',(x) = ae' ().
Consequently, if 0,y € B,(2) then

|Z Anes(x— z] < A, e,’,(y- zx +Z7~,.(1—a,.)|e;,(z)|s
< Zl,,d.nr +Z7\«,.(1—0.,,)r =r

and thus by Krein-Milman Theorem it follows that x € B,(z). B
In 1983 the author has remarked (see [N2]) that the conditions AE1)-AE6)
above are fulfilled in the context of Banach lattices by the order relation «, ,

x«,yifandonlyif[y|=|x|+[y-x|.

1.10 LEMMA. Let E be a Banach lattice. Then the following assertions are
equivalent: '
)X «y;
i) x* <y*andx <y;
iii) Every order interval [u,v] of E containing 0 and y contains also x.
Proof. i) = ii). In fact, from y* < xt + (y-x)* and | = x| + |y - x| it follows that
yE=xt+ (y- %)
ii) = 1). Clearly, y - x= (" -x") - (¢ -x") and0< (Y -x) A -x) <y Ay =0.
Consequently (y-x)* =y* - x*.
ii) = iii). If 0 and y are in [u,v]then0<y*<vandu<-y°s 0. Consequently,
ifx <ytthen 0 <x*<vandu<-x <0, which implies that u <x <v.
iii) = ii). 0 and y belong to [-y~*]; if x belongs also to this interval thenx < y*
and -y~ < x. Consequently x* < ..
We can extend the definition of «, to cover the class of all regularly ordered
Banach spaces (in the sense of Davies D).
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By an ordered Banach space we shall mean any real Banach space E endowed
with a closed cone E, which is convex, proper and £ = E, - E,; on E we consider the
ordering associated to E, i.e., x <y if and only if y - x € E,. An ordered Banach
space E is said to be regularly ordered provided that the following two conditions
are satisfied:

R1) If -y <x < y then ||x|| < [;

R2) If x € E and & > 0 then there exists a y, € E such that -y, <x < y, and
[ell < lbx]| + &.

Examples of regularly ordered Banach spaces are:

— the Banach lattices;

— the ordered Banach space 4, of all self-adjoint elements of a C* - algebra;

— the Banach space A(K,IR) when endowed with the pointwise order;

—any ordered Banach space £ with a strong order unit # > 0

(i.e., E= U[—nu, ”“] , when the norm coincides with the norm associated to u,
n=0
[kl = inf {A | A >0, -Au < x < Au}.

On a regularly ordered Banach space E we consider the A E-order relation
«, given by
x «,y if and only if every order interval [u,v] containing
0 and y contains also x.
The proof that «, is indeed an AE-order relation needs the fact that every
regularly ordered Banach space is locally a space A(K,IR). The basic ingredient is

the following
1.11 THEOREM (see [Kad2]). Let E be an ordered Banach space with a strong
order unit u > 0 such that the norm on E is the norm associated to u. Then the set

K={x'|x"e E,x'u)=1=|x}
of all states on E is w'-compact, convex and the map T : E A(K,IR) given by
(Ix)x'=x'(x), x e E,x' e K

is an algebraic, isometric and order isomorphism.

Proof. A well known theorem due to Alaoglu shows that K is w'-compact.
Clearly, it is also convex. If 0 < x < nu for some » € IN, then ||nu - x|| < n, so for each
x' € K we have [x'(nu)-x'(x)| < n. Consequently x'(x) > 0 for x > 0.

Forx € E, put a(x) =inf { A | A 2 0, x < A u}. Then a(Ax) 2 A-a(x) for every
A € R. Suppose that x and u are linearly independent. Then the functional x' given
on Span{x,u} by the formula x'(Ax + pu) = A-a(x) + p is linear and satisfies the
relation x'(u) = 1 = ||x'||; via Hahn-Banach extension theorem x' gives rise to an
element of K. The above reasoning shows that T'is a linear isometry and x > 0 if and
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only if Tx > 0. Then in order to prove that T is an onto map it suffices to shows
that the image of T is dense in A(K,R). In fact, by Lemma 1.5 above, for
every h € A(K,R) and every € > 0 there exist x € E and r € R such
that | h-T(x+ru)||<e B

We can now prove that every regularly ordered Banach space E is locally a
space A(K,IR). In fact, for every x € E, x > 0, we can consider the principal ideal
generated by x,

E.={y|y € E -ox <y < oux for a suitable o > 0}
endowed with the induced order and the norm || ||, associated to the strong order unit x,
[Vl = inf{et | -ox < y < ax}.

By Theorem 1.11, E, is algebraic, isometric and order isomorphic to a space A(K,IR)
for a suitable compact Hausdorff convex space K,,. Since 1y < Wl for every x with
x > 4y, the regularity of the norm of E yields

Il = inf {Ible- fbell | x 2 £}

1.12 LEMMA. The following assertions are equivalent for x andy two elements

of a space A(K,R):
1) x«y;
i) x <y s

iii) For each s € K, either 0< x(s) < ¥(s), or ¥(s) <x(s)<0.

Proof. The equivalence ii) <> iii) follows from Theorem 1.9 above. Clearly,
i) = ii).

iii) = ). Let 0,y € [u,v] and s € K. If 0 <x(s) < )(s) then u(s) <0 <x(s) < Ns) <
<¥(s). If y(s) < x(s) < 0 then u(s) < Y(s) <x(s) <0 < V(s). Consequently x € [u,v]. B

1.13 COROLLARY. Let E be a regularly ordered Banach space and x.y € E.
Then the following assertions are equivalent:

Dx

ii)Ifze E,andy € E, thenx € E,andx «,yin E;

iii) There exists a zy € E, such that for everyz 2 z, withy € E,we havex € E,
and x ¢, yinE,.

1.14 PROPOSITION. The order relation «, is an AE-order relation.

Proof. The fact that «, is indeed an order relation that satisfies the conditions
AE1)-AE4) & AE6) follows Lemma 1.12 and Corollary 1.13. Now suppose that
x + y «, 2y and let z > y. By Corollary 1.13 it follows that x + y «,, 2y in E,, which
implies that |, < |V, < 1. Particularly, z 2 +x. Then

A= int I, Il inf . =
2 inf |, [ = o =
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It is possible to introduce regularly ordered complex Banach spaces by
complexification. See [LTz2] or [S2] for the particular case of complex Banach
lattices. The order relation «,can be adapted easily to this context,

2. AE-ORDER RELATIONS ASSOCIATED TO VECTOR NORMS

Let £ be a Banach space. By a vector norm on £ we mean any map ¢ from £
into a Banach lattice X such that:

N1) @(x) for every x € E; @(x) = 0 if and only if x= 0

N2) p(ox) = @(x) foreverya e K, x € E

N3) @o(x +y) < @(x) + o(y) forevery x,y € E.

We shall assume in addition that ¢ is also an isometry i.c.,

oGl = ]| for every x € E.
Then we can associate to ¢ the following two order relations on E:

x oY if and only if @(y) = @(x) + @(y - x)
X ¥ if and only if @(x - 2) < @(z) v @(y - 2)
forevery z € E.

For @ =|| ||, the norm of E, we have o= and &, = . For E a Banach
lattice and @ =1 [, the modulus on E, we have €0 = Y= < an thus studying «
O 4, IS 2 Way to unify results from Banach lattice theory and isometric theory of
Banach spaces.

The fact that «,, satisfies the condition AE4) above can be argued as follows:
AEA4) has a local character i.e., we may restrict ourselves to the case where dim
E < co. Then there exists x € X, x > 0, such that (E) c X, = {y | )| < ax for a
suitable a > 0}. We shall consider on X, the norm

VIl = inf {a | < cux}.

Then a classical result due to Kakutani-Krein asserts that (X, || ||) is a Banach
lattice-algebraic, isometric and lattice isomorphic to a space C(S,IR) for a suitable
compact Hausdorff space S. Moreover The inclusion i, : X, — X is a continuous
lattice morhism. So we are led to the case where X is a space C(S,IR). In that case,

X oy 1f and only if @(x - 2)(s) < @(z)(s) v @ - 2)(s)
for every z € C(S,IR) and every s € S;
if and only if x «;, y with respect to every
seminorm p(.) = @(.)(s), s € S

and the proof of AE4) reduces to the case of «,,.
In what follows we shall be concemned with the duality of vector norms. Since
we cannot give a satisfactory reference for that subject we shall give the details here.
2.1 Definition (L.V. Kantorovich). A vector norm @ : E — X is said to have
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the Riesz decomposition property (abbreviated, RDP) provided that for every u € £
and every x,, X, € X, with () < x; + x, there are u;, u, € E such that ¥ = u; + u,
and @(u;) < Xy, @) < X,.
If a vector norm ¢ has RDP then @ is fully valued i.e.,
0 < x < (u) implies x = @(v) for a suitable v € E.

Clearly, not every vector norm is fully valued. Any “scalar” norm, as well as
the modulus of a Banach lattice, has RDP. In both cases the vector norm is isometric.
Other examples of isometric vector norms with RDP are indicated below. We shall
need the following technical lemma:

2.2 LEMMA. Let E be a vector space, X an order complete vector lattice,
U: E — X a linear map and P,, P, : E — X sublinear maps such that U(u) < P{(u)+
+ P,(u) for every u € E. Then there exist linear maps U,, U, : E > X such that U=
= U, + U, and U(u) < P(u) for everyu e E, i € {1,2}.

Proof. Consider the sublinear map P : E x E — X given by P(uy,uy) =Py(uy)+
+ P,(uy). Let A= {(u,u) | u € E}. Themap V': A - X given by W(u,u) = Uu)
satisfies the inequality V(u,u) < P(u,u) for every (u,u) € A. Consequently, the
operatorial version of Hahn-Banach theorem allows us to extend V' to a linear
map V : E x E — X such that V(u,u,) < P(uy,u,) for every (uy,u,) € E x E. The
maps U, () = V(1,0), Uy(u) = V(0,u) have all required propertics. B

2.3 Examples. I am indebted to Dan T. Vuza for the following examples of
isometric vector norms with RDP.

i) Let E be a Banach space and let X be an order complete vector lattice.
A linear operator U : E — X is called majorizing if U maps the unit ball B, (E) of
E into an order bounded subset of X. The set of all majorizing operators from E into
X is a vector space denoted by M(E, X). The map : M(E, X) = X given by p(U) =
=sup U( B, (E)) is a vector norm having RDP. To see this, let p(U) <x, +x,. Lemma
2.2 applied for the linear map U and the sublinear maps P, P, : E — X given by
P(u) = |lullx; (G € {1,2}) yields the linear maps U,, U, such that U= U, + U, and
U (u) < |jul|-x; for every u € E, i € {1,2}. 1t follows that u; € M(E X) and pn(u;) <x;
fori e {1,2}.

Suppose now that X is a Banach lattice and define the norm I lls on M(E.X) by
10l = (D)l Endowed with this norm, M(E.X) becomes a Banach space and p
becomes an isometric vector norm.

ii) Let E be a Banach space and let X be a vector lattice. A linear operator
U: X — Eis called cone summable if for every x € X, we have

o(U)x= sup{znl" U(x)| | nelN*, x; eXHix,- = x} <o,
i=1 i=1

The set of all cone summable operators from X into E is a vector space, denoted by
S.(X,E). The map x — o(U)x can be extended by linearity to a positive linear form
on X, denoted by o(U). Thus we obtain a vector normo : S,(X,E) > X~, where X~
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denotes the vector lattice of all order bounded linear forms on X.

If Eis a dual Banach space then o has RDP. This can be shown as follows: Let
be a predual of £ i.e., a Banach space F such that F' = E. We associate to every
U € S,(X,E) amap U eM(F, X~) given by U (V)(x) = U(x)(v). The correspondence
U— U establishes a bijection between S,(X,E) and M(F,X ~) suchthat u(U ) = o(U);
it remains to use the example i) above in order to conclude the proof.

Suppose now that X is a Banach lattice and define the norm llls on S,CGE) by
|Ulls = llo(U)||. Endowed with this norm S(X,E) becomes a Banach space and o
becomes an isometric vector norm.

iii) Let £'be a Banach space and let X be a Banach lattice. We denote by i the
canonical inclusion of £ into £" i.e.,

igX)(x)=x'(x), x e E,x' € E..

Let M.(E'.X) be the space of all linear operators U : E' — X satisfying the
following requirements:

a) UX') cig(E). 5%

b) There exists an x € X such that U( B, (E") is contained and totally
bounded in (X, || |,).

It is easy to show that the supremum of a totally bounded set of a Banach
lattice with a strong order unit always exists. In fact, via Kakutani-Krein
representation theorem every such a space is a _space C(S,R). Consequently, for
every U € M(E'X) it makes sense w(U) = sup U( B, (E')) in X, The map pu: U— p(U)
is a vector norm on M,(E',X). With respect to the norm I lrs given by
U, = IMO)|l, M.(E'.X) becomes a Banach space and p becomes an isometric
vector norm.

The vector norm p has RDP. Indeed, because every order ideal (X, || ||,) is
algebraic, lattice and isometric isomorphic to a space C(S,IR), it suffices to prove
the assertion in the case where X is itself a space C(S,R). In this case, for every
U € M.(E',C(S,R)) there exists a continuous map F : § = E such that
U(u)(s) = u(F{(s)) forevery u € E and s € S. The fact that () < x; + x, means
IF(I < x1(s) + x,(s) for every s € S. Consider the continuous maps F,: S > E
(7 € {1,2}) given by

Fis) = (ey() +x5(8)) ! x,(5)-Fs), if x,(5) +x5(5) > 0

Ff(s)=0 , if x(8) + x,(s) = 0.
The operators U; € M,(E',C(S,R)) given by Uu)(s) = u(F(s)) (i € {1,2}), satisfy
all requirements in the definition of Riesz decomposition property.

The Banach space M, (E",X) is isometric to the M-tensor product.
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The interest for vector norms with RDP is justified by the possibility of dualizing
such norms. Indeed, given an isometric vector norm @ : E — X with RDP the dual
vector norm @' : E' — X' of @ is defined by

()

for every ' € E'and x € X, ; the map @'(u") : X, > IR, is positively homogeneous
and additive (because of RDP) and thus extends uniquely to a positive linear form
on X, also denoted by @'(#). It is clear that ¢' is a vector norm.

2.4 PROPOSITION. @' is an isometric norm with RDP.

Proof. The fact that @' is isometric is a straightforward calculation.
In fact,

(p'(u’)(x = sup

Q(u)sx

u’(u)| =

vl o(w)x)=sup sup.
x20 x20

~ suplae ()] =]

i<
To see that ¢' has RDP let ¢'(w') <x', + x',. Equivalently,
u'(u) < x'3(@)) + x'(¢(w)), # € E.

" By applying Lemma 2.2 to the linear form u' and the sublinear forms
u = X' {e@)) (i € {[1,2}), we obtain the linear forms #'; such that u'(x) <x'(¢(x))
(foru € Eandi e {1,2})and u'=u'; + u'y. Consequently ¢'(u';) < x';and the proof
is done. ®

Proposition 2.4 allows us to consider ¢", " and so on.

2.5. PROPOSITION. Let @ : E — X an isometric vector norm with RDP.
Then

’ = sup |u'\u
x(ofu) = sup |u(u)
foreveryu € Eandx' € X', In other words, @"(ig(u)) = i(@®)).

Proof. Themapu — x'(q(w)) is a seminorm on £ and the set of all linear forms
majorated by itis {u'|u' € E', ¢'(u') < x'}; thus our assertion is a consequence of
Hahn - Banach extension theorem.

The duals of the IR - valued norms are the usual dual norms.

The dual of the vector norm % —> Ju| on a Banach lattice £ is the vector norm
u' = u|onE". ‘

The dual of M,(E',F) can be isometrically identified with S,(F.E").
When this identification is performed, one can show, by using the techniques
in [Ch], that the dual norm of the vector norm p on M,(E',F) is the vector
norm o on S,(F,E"). )
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3. BANACH SPACES HAVING AN ORDER CONTINUOUS NORM

Throughout this section £ will denote a Banach space endowed with an AE-
order relation «.

3.1 Definition. We shall say that the norm of E is (« - ) order continuous
provided that every downwards directed net (x,), of elements of £ is norm convergent.

If the norm of E'is order continuous, then every upwards directed « - majorized
net of elements of E is also norm convergent. In fact, if (x,), is such a net and X, <y
for every a then the net (y-x,), is « - decresing. The argument is as follows: X, €Xp Ky
implies y - x;, « y and x,, - x, « X, « y and thus by condition AE4) we conclude that y
= Xp « (04 'xb) g 3 (xb'xa) =yV-X,

Also, in Definition 3.1 above it suffices to deal with sequences instead of nets.

For u,v € E with u « v, we define the (« - ) order interval of extremities % and

v as the set
[uv]={x|x € E, u «x « v}.

In order to underline the order relation under study we shall use also notation
like [u,v],, [,v], (When « = «;) and so on. Particularly, if E is a Banach lattice we
must distinguish carefully among the intervals [u,v], and the usual order intervals,
denoted by [, v]. -

32LEMMA. Ifu«vithenfuvl={x|x e E ,x-u«v-u}.

Proof. Infact, ifu «x « vthenx -u «x « vand v-x « v, so by AE4) we infer
that x - u « (v-x) + (x - u) = v-u. Conversely, fromx - u « v-u « vand u « u « v
we infer thatx - u +u « v-u+uie, x «v. Also, fromx -u «x-u « vand u « vwe
inferthatu «u+(x-u)=x«u+v-u=v. M

If E is a Banach lattice, then from Lemmata 1.10 and 3.2 above we infer that

[uvl,=[unv,uvvi

and thus [-u,u], = [-u,u] for u > 0.

3.3 PROPOSITION. Every « - order interval [u,v] is convex, bounded and
norm closed.

Proof. Let x,y € [u,v] and a € [0,1]. Then by AE2), au « x « av and
(1 -o)u «(1-a)y « (1 -o)vwhich yields, via AE4), that u « ox + (1 - )y « v. By
Proposition 1.2 iii) above, u,v € B m(0) and thus [«,v] is a bounded set. The fact
that [u,v] is norm closed follows from Lemma 3.2 and AE6). B

3.4 COROLLARY. IfE has « - order.continuous norm and (x,), is a « - downwards
directed net of elements of E then (x,), is norm convergent fo its « - g 1.b.

Proof. Suppose that |jx, - x|| = 0. Since all intervals [0, x,] are norm closed, it
follows that x « x,, for every a. The same argument shows that if y « x,, for every a
theny «x. ®
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For E a Banach lattice and « = «, , Definition 3.1 above agrees with the usual
concept of order continuity (called here (o) - continuity) as known in Banach lattice
theory,

0 < x, ¥ in E implies (x,), is norm convergent.

See [LTz], p.7, ot [S], p.92. Most of the results in this section are inspired by this
particular case. :

It was noticed in [AE], p.107, that the norm of every Banach space is «; -
continuous. We shall prove here a more general result.

3 5 PROPOSITION. Let X be a Banach lattice with (o) - continuous norm and
let ¢ : E — X an isometric vector norm. Then the norm of E is «, 4 - CONtinuous.

Proof. Suppose that (x,), is a « - downwards directed net of elements of E.
Then (@(x,)), is a downwards directed net of positive elements of X and thus norm
convergent. Since for ¢ 2 a, b we have

(p(xa = xb) < (P(xa 7 xc) g (P(xb : xc) =
= @lx,) + 9xz) - 26(x.)
it follows that (x,), is a Cauchy sequence in the Banach space E.m

Another criterion of order continuity is as follows:

3.6 PROPOSITION, Suppose that all order intervals [u,v] of E are weakly
compact. Then the norm of E is order continuous.

As in the case of Banach lattices, this is an immediate consequence of

3.7 DINI’SLEMMA. Suppose that (x,), is a downwards directed net of elements
of E, weally convergent to x. Then |jxy - x|| = 0.

Proof. Notice first that x «x, for all o, In fact, all the order intervals [0, x,,] are
convex and norm closed, which implies that they are also weakly closed. Since (*De
is downwards directed it follows that x € [0, x,] for every a.

The net (x,, - X), is also downwards directed. In fact, if x, «xp then xp - x, «xp
and x, - X « X, « Xp, S0 by AE4) we infer that x, - « (x, - X) + (xp - Xo) =Xp - X.

Since x, - x —¥— 0, for every € — 0 there exists a convex combination

ékk(xa(k) —x)

of norm <&. A new appeal to AE4) shows that for &> o(1), ... ,a(V) sufficiently large,

N N
X, —x= ;lk(xa —x) « ;lk(xa(k) —x)

and thus [jx, - x|| < €, by Proposition 1.2 iii). M

By Proposition 3.6, the norm of every reflexive Banach space is order
continuous regardless of AE-order relation we consider on it.

A result due independently to H.P. Lotz [L] and Niculescu [N1] asserts that
the converse of Proposition 3.6 is valid for E a Banach lattice and « = «,. However
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this is not longer true in the general setting e.g., consider the case where E = o, « = «;
and x is the unit of o.

We come now to the main source of Banach spaces with order continuous
norm. Our construction exploits the fact that every von Neumann algebra has a
unique (up to isometry) predual and its real part is an ordered Banach space with a
strong order unit. See [SZ].

Givena topology 7 on a Banach space E, we shall denote by o the T - operator

topology on L(E,E) i.e.,

T, —=> T if and only if T,(x) > T(x) for every x.

3.8 LEMMA. Let £ be a commutative von Neumann algebra included by
L(E,E), such that the inclusion s{ — L(E,E) is a morphism of unital normed algebras
mapping w' - convergent nets into 10 - convergent nets, where 1 = o(E, %) is the
weak topology associated to a certain separating subset X of E'.

Then

x «yyifand only if x = Uy for a suitable U e o, 0 < U< i

is an AE-order relation on E satisfying the following two conditions:

1) Every « - downwards directed net (x,),, of elements of E is 1 - convergent
fo its g.1.b.

11) All « 4 - order intervals [u,v] are < - closed.

Proof. We shall put [0,7] = {U| U € &, 0 < U<I}. Because +is space L™(i),
it satisfies the following Radon-Nikodym type property

(*) For every S, T € &, there exists a U € [0,]] such that S = U(S + T).

It is immediate that «, is a reflexive transitive relation on E satisfying the
conditions AE1)-AE3) and AES) in Definition 1.1.

For the antisimmetry of «, suppose that x «,y and y «,x. Then there are
STUe [0,/] such that

x=8y,y=Txand - S+ U({- ST).

The existence of U is guaranteed by (*). We have y - x = (I-S)y = U( - S+ S(I - T))y
=U(0)=01ie,x=y.

For AE4), suppose that x; « 4y, X, « gy, and y; « gy + ¥, 1€, x; = Sy,
Xy = 8y, 11 = Ty +y,) for suitable S, Sy, T € [0,7]. Then x; = S,T(y; + y,),
x, =8,(I - T)(y, +y,) and 0 < 8T + Sy(I - T) < I, which implies x, || x, and x, +
tXy Cg 1 Tt Vo

For AE6), let x, « 4y (o0 € 4) with |x, - x|l = 0. Then for each a there exists
a U, € [0,]I] such that x, = U,y. Since the unit ball of . is w' - compact, we may
assume in addition that (Ug), is w' - convergent to a U € [0,/]. Then
x'(Uyy) = x'(Uy) for every x' € #'and thus x = Uy. This ends the proof that « 4 is an
AE-order relation on E.

Let (x,)q < [#,v] a net © - convergent to x. Since x, _ U,v for suitable
U, € [0,]] and the unit ball of &Zis w' - compact, we may assume in addition
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that (U,), is w' - convergent to a U € [0,/]. Then x = Uv and thus x « 4 v. For the
inequality u « 4 x, notice that x, - # «, v and repeat the argument above.

Finally let (x,), be a downwards directed net of elements of E such that x, « ;v
for every o.. We can show as above that x is a T - cluster point of (x,),. Since (x,), is
downwards directed and the order intervals of E are t - closed, it follows that x is the

g.1b. of (x,), and thus the only t - cluster point of (x,),. ®
From Lemmata 3.7 and 3.8 we infer that the norm of £ is « - order continuous

provided that t is the weak topology on E.

4. FACIAL CONES

The facial structure (of the unit ball) of a Banach space E will be expressed in
terms of cones. By a cone we shall mean any non-empty subset C of E such that

C=|JaC . A cone C of E s said to be proper (respectively hereditary with respect

to an AE-order relation « on E) provided that C n (-C) = {0} (respectively x « y and
y € C implies x € C). A cone C is said to be convex provided that C+ C c C.
A convex cone C of E is said to be («-) facial provided that the following two

conditions are satisfied:
FC1) C is hereditary;
FC2) x || y for every x and y in C;
By F 2) and anti-symmetry of «, every facial cone is proper.
For every x € E, the convex cone

C(x)={y|y € E, y « ox for a suitable o > 0}

is the smallest facial cone containing x i.e., the facial cone generated by x.
It is easily seen that a convex cone C of E is facial if and only if C=J C (x)
and x;, x, € C implies C(x;) + C(xy) < C(x, + x5). x=¢
A facial cone may not be closed e.g., see the case where £ =L?[0,1], «= «,and
C =C(1); in this case C = E,.
The facial picture of a Banach space is clarified by the following results.
4.1 LEMMA. If C, and C, are facial cones such that C, c C,and C, # C, then

C,cFrC,.

Proof. Suppose that the contrary is true. Then would existanx € C;and anr> 0
such that B,(x)(\C, c C,.Ifze C,\ Cy, |lz|| <r then x + z € B,(x) (N C, c C}. Since
x, z € C,, we have z « z + x. Since C, is hereditary, the later inequality implies that
z € C,, a contradiction. B

4.2 COROLLARY. Let C be a facial cone and x € C\ Fr C. Then C = C(x).

An equivalent way to describe the facial picture of a Banach space is

indicated below.
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4.3 Definition. By a facial structure on a Banach space E we shall mean any

family (C,), . g of proper convex cones of E, satisfying the following conditions:
)x e C,andaC, = C,, foreveryxe Eanda € K;

11)Ify,ze G thenC +C cC,,

m)ye C, unphes G, c Cs

iv) Foreveryx € E the set [0x]={y|y,x-y e C} is convex, closed and
contained in the ball B pey2(X/2).

The facial structure associated to an AE-order relation « is (C(x))x N Every
facial structure on E can be obtained in such a way. In fact, if (C,), . gis a facial
structure on £ then by letting

x«yifandonlyifx,y-x € C,

we obtain an A E-order relation « on E such that C,= {x|x «ay for a suitable o > 0}
for every y € E. Consequently the AE-order relatzons and the facial structures on a
given Banach space are in a natural one-to-one correspondence.

By Lemma 4.1, every facial structure gives rise to a certain partition of the

whole space into simmetrical cones.
The facial cones allow us to develop an ideal theory that is in many respects
comparable with that in Banach lattice theory. For, we need an observation, important

for itself.
To any convex proper cone C of vector space £ we can associate an ordering

on E, compatible with the linear structure:
x<y(modC)ifand onlyify-x € C.

4.4 LEMMA. If E is endowed with an AE-order relation « and x and y are two
elements of E then the following assertions are equivalent:
)x«y;
ii) 0 « x « y (mod C) for a suitable facial cone C containing y,
iii) 0 « x « y (mod C) for every facial cone C containing y.
Proof. 1) = iii). If x « y and C is a facial cone containing y then x, y-x € C
because C is hereditary. Clearly, iii) = ii).
i) = 1). By hypotheses, x and y - x are in C. By FC2), x || y-x and thus
x«y=x+(y-x). R
The principal ideal generated by an element x of E is defined as the set
E, = Span C(x). The real part of E,,

Re E, = C(x) - C(x)
will be endowed with the ordering associated to C(x) and the norm
IV, =inf{a|a e R, Ju «ox, vaax,y=u - v}.

The fact that ||y||, = 0 implies y = 0 can be proved as follows. Let u,,, v, € C(x)
with y =u, - v, and u,,, v, « x/n for every n € IN* . By proposition 1.2 iii), ||}, ||V,
« |iell/n, so by lettmg n — oo we conclude that y = 0.
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4.5 LEMMA. For y € E, and o 2 0 the following assertions are equivalent:
i)y =u-v, where u,v « ox; 7
ii) -ox < y < ax (mod C(x));
iii) y + ox « 2owx.
Proof. Clearly i) = iii) and ii) < iii). As concerns the implication iii) = 1),
notice that y + o « 20w yields ox - y « 20 and thus y = y+ox)2-(ax-y)/2. 1
From Lemma 4.5 and AE5) we infer that |

E.={y|y + ax « 20x for a suitable o 2 0}

and the canonical inclusion i, : Re E, — E is continuous with [|f,]| < {}x[.
4.6 LEMMA. Re E, is an ordered Banach space with a strong order unit, x. -
Proof. We have to prove only the completeness of Re E,. For, let (y,), be a
Cauchy sequence in Re E, . Since i, is continuous, (,),, 1s also a Cauchy sequence
in E and thus there exists a y € E such that [y, - || = 0. On the other hand, for each
g > 0 there exists an N € IN such that

W, = Yl x < € for every m, n2 N ie.
€x <y, -y, < ex (mod C(x)) for every m, n2 N
by Lemma 4.5 above. By letting m — o we infer that
€x<y-y,<ex (mod C(x)) foreveryn2 N

which yields y € E and ||y - y |, <e forn2N. &

The following proposition combines classical results due to Kadison Kakutani
and Krein.

4.7 PROPOSITION. i) Re E, is algebraic isometric and order isomorphic to
the ordered Banach space A(K,IR), where K denotes the w'- compact convex set of
all states of Re E,.

il) Suppose in addition that

1) either Re E, is endowed with a bilinear multiplication for which x is an
identity and y, z € Re E,, y 2 0, z 2 0 implies yz 2 0; or,

2) Re E, is a vector lattice with respect to the ordering mod C(x).

Then Re E, is a commutative Banach algebra algebraic, isometric and order
isometric to the Banach lattice C(S,IR), where S denotes the w' - compact set of all
pure states of Re E,.

Proof. For i), see [Kad2]; ii 1) follows from Theorem 1.11, while ii 2) needs
the classical representation theorem of AM-spaces due to Kakutani and Krein. See
[S] for details.

5. FACES AND EXTREME POINTS

The facial cones can be also defined as the cones generated by faces. Suppose that £
is a Banach space, K = B, (0) is the unit ball of E and S is the unit spere of E.
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5.1 Definition. A («-) face of K is any subset F of S satisfying the following
three conditions:

Fl1) x ||y for every x,y € F;,

F2) F'is absorbant i.e., y € K\ {0}, x € Fand y « x implies y / |y|| € F;

wc+(l—a y

F3) x,y € Fand a € (0,1) implies eF.

+(1-a

The connection with the usual notion of face is))élxplained below.

5.2 LEMMA. For F a subset of K the following assertions are equivalent:

1) Fis a proper face in the classical sense i.e., F is a convex subset of S such
thatx,y € F, a € (0,1) and ox + (1 - a)y € Fimplies x,y € F.

1) Fis a « - face.

Proof. 1) = ii). Suppose that x and y are two points of F. Since F is convex,

x/2 +y/2 € F. Then
x+
=54 L+ L

which implies that x || y. For F2), let y € K\ {0} and x € F with y «, x. Then
1= ||| = [[yl| + [pc - ]| and

T =

which implies that y / ||y]| € F. The condition F3) is clear.

11) = 1). We shall show first that F is convex. For let x,y € F c S and let
a € (0,1). Since x || y, by Proposition 1.2 iv) above we infer that [jax + (1 - a)y[l
=|lood| + ||(1 - o)y|| = 1 and the desired conclusion follows now from F 3).

Ifxy e K,a € (0,1)and ox + (1 - a)y € Fthen 1 = |joxx + (1 - a)y|| = [lowx]] +
+I(1 - )yl < 1, which yields ||| = |yl =1 and ax, (1 - o)y «, ax+ (1 - )y € F. It
remains to apply F2) in order to conclude that x and y are in . B

There exists a natural one-to-one correspondence between the (closed) facial
cones and the (closed) faces. In fact, if C is a (closed) facial cone of E and C # 0
then F=C[Ss a (closed) face and C = cone F, the cone generated by F. The empty
set 1s the face corresponding to the cone {0}. Conversely, if F is a (closed) non-
empty face of K, then C = cone F is a (closed) facial cone such that F= C\S
and C # {0}. In fact, suppose that F'is closed and let (x,), be a sequence of elements
of C such that ||x,, - x|| = 0. If x # 0 then |Ix,|| — |bx|| and x,/|}x,|| = x/|px]|. Since F'is
closed, x/|jx]| € F and thus x € C.

By Zom's Lemma, every face is contained in a maximal face. We do not know
whether the closure of a face is still a face. This is true for usual faces, so in this case

maximal faces are closed.
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The following example shows that F1) and F2) above do not yield F3). For,
consider the Banach space E = ¢*(2,IR), endowed with the AE-order relation «;.

The vertices u = (-1,1) and v=(1,1) of the unit ball K of E belong to the same «; -
face of K. Consequently the set F'= {u,v} satisfies the conditions F1) & F2). Since

(%u-r%v)/ —é—u+—é~v
The case where E = {®(2,R), « = «,and F'=E, ) S shown that a « - face is
not necessarily convex.
In operator algebra theory it is known the notion of a face of a C* -
algebra. 4 face of the C* - algebra s is any convex cone C contained in 7,
such that

¢ F, F does not satisfies F3).

y,, x € Cand y < x implies y € C.

In our terminology, the faces of . are precisely the «, - facial cones of Re &,
contained in &Z,.

_ Every point x of the unit spere of a Banach space E belongs to a
certain face. In fact, face {x} = C(x)\S is a face, precisely the smallest

face containing x.
5.3 Definition. A norm 1 element x of E will be called (« -) extremal for K

provided that C(x) = R,-x i.e., face{x} = {x}.

Since K is the only subset of E whose extreme points are investigated
we shall denote by Ex E (or Ex, E) the subset of all extreme points of K.
Also, in order to avoid sub-scripts, we shall use notation like Ex; £ when «
=« etc.

Notice that if Fis a « - hereditary closed subspace of E then

Ex F=(Ex E)(F.

For « = « we retrieve the classical notion of an extreme point. See Lemma 5.2
above.

5.4 LEMMA. Let H be a Hilbert space and . the von Neumann subalgebra of
L(H,H) generated by a self-adjoint operator A € L(H,H). Then Ex 4 H consists of
all normalized eigenvectors of A.

Proof. Let v € Ex,y H. Because 0 < 47, A" < ||4|-land 4, 4™ € 4, it
follows that Av , A*v « ||/4|-v and thus Av =A4%v - Av = avfora
suitable a €IR.

Conversely, let Av="av with||v]|=1"and a € R. Then fld)v=fa)-v
for every f eC(c(4),C) i.e., v is an eigenvector for every operator in the
C* - algebra C* {4,I}, generated by 4 and /. Since « is the wo - closure of
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C* {4.1}, then the same is true for every operator in .. Consequently, x « , v
implies x =2 v for a suitable A € Cie,v € Ex ,H. W

The notion of an extreme point is very closed to that of discrete element.

5.5 Definition. By a (« -) discrete element of E we shall mean any element x
of E such that u,v «x and C(u) N C(v) = {0} implies either u or vis 0.

Clearly, every element of Ex E is discrete. Conversely, every normalized discrete
element is also an extreme point. Before indicating the details, we shall notice the
particular case of Banach lattices:

5.6 PROPOSITION. Let E be a Banach lattice.

1) An element x of E is «, - discrete if and onlyifitis anatomi.e.,u,v<|x|and
u Av=0implies either u or vis 0.

i) Ex, E coincides with the set of all normalized atoms of E.

Consequently, in the real case,

Ex; ¢y =O Ex,co={x {5, ,},,| n € N}
Ex; C[0,1] = {1} Ex, C[0,1]=O
Ex; L2[0,1] = {x | ||| = 1} Ex L?[0,1]= O

We shall prove that in general every normalized discrete element is an extreme
point. Our argument is essentially finite dimensional and depends upon an analogue
of the orthogonal decomposition.

5.7 LEMMA. Let E be a finite dimensional Banach space endowed with an
AE-order relation « and let x € E, x # 0.

Then the cone C(x) is closed and for every e € E there exist elements u and v
in [0,e] such thate =u + v, u € C(x) and C(v)( C(x) = {0}.

Proof. We shall show first that the cone C(x) is closed. For, let (y,), be a
sequence of elements of C(x) such that ||y, - y| = 0 in E. Then Y <« |ly-x for every
n. Since dim E < oo, the canonical inclusion i, : E, — E is an isomorphism into and
thus y € E, and ||y, - ||, — 0. Put M= sup || Yull.- By AE3) and AE6) above, we infer
that y « Mxie.,y € C(x).

As concerns the decomposition part, consider the set
A,={z|ze€ C(x),z«e};0 € A, and 4, is inductively ordered by «. In fact, the
order interval [0,e] is compact and thus every increasing net of elements of [0,¢] is
norm convergent to its Lu.b. By Zom's lemma, A, must contain at least one maximal
element, say u. It remains to prove that v=e - u satisfies CVNCx) = {0}. In fact, if the
contrary is true then would exist a z € C(x) such that z # 0 and z « v. Since z «
e-u,u«uande-u| u by AE4) it follows that z + u « e and u « z + . Since
C(x) is convex, z + u € C(x) and this fact contradicts the maximality of u.

Consequently C(v)NC(x) = {0}. m
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5.8 LEMMA. Let E be a finite dimensional Banach space endowed with an
AE-order relation «. Then Ex E consists precisely of all normalized discrete
elements of E.

Proof, Suppose that e is a normalized discrete element of Eand e € Ex E.

Then there exists an x € E such that x « e and x ¢ IR -e. Put o = sup {A [Ae «x}.
Then x - ae # 0 and C(x - ae) (| R,-e = {0}. In fact, if pe « Mx - ae) with
pA e R, then (0 + A)e « Ax i.e., (WA + a)e « x, in contradiction with the
definition of a.. By Lemma 5.7, e admits a decomposition

e=utyv

with u € C(x - ae) and C(v) () C(x - ae) = {0}. We shall prove that both w and v .
are different to 0, which will contradict the fact that e is discrete.

Ifv=0,thene=u € C(x-oae). Or, C(x-oe) N R -e= {0}.

Ifu =0, then e = vand thus C(e) N C(x - o) = {0}. Or, x - ae «x « e, so that
C(x - ae) c C(e).

Consequently, e is an extreme point of E. The other implication is clear.

5.9 THEOREM. Let E be a Banach space endowed with an AE-order relation
«. Then Ex E consists precisely of all normalized discrete elements of E.

Proof. We have only to prove that every normalized discrete elements e of E
is also an extreme pointi.e.,

Cle)=R e.
For, notice that « induces on every finite dimensional subspace F of E an AE-order
relation «; given by

x «y if and only if x and y belong to Fand x « y in E.

By Lemma 5.8, C(e) | F = IR -e for every finite dimensional subspace F

which contains e and thus C(e) is indeed IR -e. B
It is worthwhile to mention that every extremal point x belonging to a facial
cone C generates an extremal ray IR -x of C Le.,

x=ou+ (1 -a)vwithu,ve Canda € (0,1)implies u,v € IR -x.

As shows the following example, not every extremal ray of C is generated by
an extreme point. In fact, let E=L*0,1], « =« and C= C(1). Ex E = @ because
E has no atoms. However every characteristic function x, € E gives rise to an
extremal ray of C. The same example shows that Krein-Milman Theorem may be
not valid for « # «;.

We shall prove in section 10 an analogue of Hilbert-Schmidt Theorem that
brings together several types of finite dimensional decompositions including the
orthogonal and the lattice ones. The basic ingredient is the case of finite
dimensional spaces.

5.10 THEOREM. Suppose that diim E = n and E is endowed with an AE-order
relation «. Then for each x € E there exist scalars a.,...,0, € [0, |Ix|l] and « -
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extreme poinis e,,...,e, € C(x) such that
x=oet..toe .

Proof. The assertion is clear for x an extreme point.

Suppose that x ¢ Ex E, ||x|| = 1. We shall prove first that there exist discrete
elements f such that f « x and f#0. In fact, by Lemma 5.8 above, there exist
elements u,ve [0x]\ {0} such that C(«) N C(v) = {0}. By Lemma4.1, C(x) cFr Cl)
and thus dim C(u) < dim C(x) < n. Consequently, in at most steps we are led to
a discrete element f, with f, «xand f, # 0. Put e = /i/Iflland &, = sup {X [Ae, «x}.
Thene, € Ex Eand C(x-a,e,) N Cle,) = C(x - ae) N R, e ={0} Ifx- ae, is
not discrete the process described above should be continued with x - a,e, instead

ofx. @
For « =« , Theorem 5.10 above shows that every x in the unit sphere of £ is

a convex combination of extreme points. In fact, if

x=woe +..toe
withe,,....e € C(x) and a,,...,o >0, then, by FC2),
1=kl = loe,]| + ... +[lo,e,|| =

=a +..+a.
1 n

Since e € Ex E (1 C(x) if and only if -e € Ex E [ C(-x), Theorem 5.10
includes the classical result due to Caratheodory that states that each point in
the unit ball of an »-dimensional Banach space is a convex combination of at
most n+1 extreme points. In turn, Theorem 5.10 is an easy consequence of
Caratheodory's result.

Theorem 5.10 includes also the following result due to Yudin: Every finite
dimensional Banach lattice has a basis formed by atoms (and thus it is algebraic,
topologic and lattice isomorphic to a space R *).

From Theorem 5.10 we can deduce easily the fact that given an n x n -
dimensional self-adjoint matrix 4 there exists an orthonormal basis of C" formed
by eigenvectors of 4.

Theorem 5.10 extends to all Banach lattices whose order intervals are com-
pact, asserting the fact that they are discrete. See [Wh]. An open problem in this
setting is outlined at the end of this paper.

6. THE DECOMPOSITION DETERMINED BY A CONE

As usually, E will denote a Banach space endowed with an AE-order relation
«, K its unit ball and S the unit sphere of E.
The complementary cone of a cone C of E is defined as the set

Ci={x|Cx)N C={0}} =
={x|y«xand y e Cimplies y = 0}.
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Notations like C+«, C*M etc, are intended to underline the order relation under
study «, «,, etc.

Generally C* is a hereditary cone but C* need not be convex or proper even
if C has these properties. For example, if E is the Euclidian 2- dimensional space
and A= {(a,o) |a € R} then

ARL=R2\ {(@,0) |oce R: .
6.1 THEOREM. Suppose that E admits weaker locally convex Hausdorff

topology < such that every « - upwards directed « - majorized net (x,), in E has a

1 - convergent subnet.
Let C be a T - closed convex cone of E. Then every x € E admits a

decomposition
x=u+v
whereue C,u«xand ve C*.

Proof. LetA= {y|y € C,y«x}. Then 0 € Cand 4 is inductively ordered. By
Zom's lemma, 4 contains at least one maximal element, say u. Theu € C, u «xand
we shall show that v=x-u e C*. In fact, if the contrary is true, then would exista
ze C, z#0, such that z « v. Since z « x.- u, u « wand x - u || u, by AE4) above it
follows that # « z + u and z + u « x. Since C is convex, z + u € C and this fact

contradicts the maximality of u. Consequently ve C*. B
The hypotheses of Theorem 6.1 are fulfilled in each of the following two

particular cases:

A) E has order continuous norm and 7 is the norm topology;

B) E'is the dual of the Banach space F' (endowed with an isometric vector
norm @ : F— X having RDP), « =« . andt=w".

The argument in case B) constitutes Corollary 6.3 below,

6.2 LEMMA. Let @ : E — X be an isometric vector norm with RDP. Then
every <, . - interval [u', v'] of E' is w' - compact.

Proof. By AE4),

[, v) = [0, VI 1 '+ [0, V1)),
so that it suffices to prove that every order interval [0, v'] is w' - compact. For,
notice that [0, v'] is the intersection of all balls B ()= {z'|z € E'; ¢'(z' - u) <x'}
with #' € E'and x' € X",, that contains 0 and v'. Or, any ball B (u)isaw'- closed
subset of a w' - compact set, {z'|z'€ E', ||z’ - «'|| < [|X'[[}.

6.3 COROLLARY. Let E and ¢ be as above. Then every «, . - upwards di-
rected &, - majorized net (') of elements of E' is W' - convergent (o its «, .- g.lb.

Applications of Corollary 6.3 to the study of Boolean algebras of projections
will be given in section 9.

The following example outlines the significance of Theorem 6.1 in the case
of Banach lattices. Suppose that E is a Banach lattice and #is a closed lattice ideal
of E i.e., a closed subspace of E such that | x| <|y|and y € Fimplies x € 4. Then
the «, - complementary cone of Jis also a closed lattice ideal of E and coincides
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with the order orthogonal of .%,
It={x|xeE, |x|n|y|=0foreveryye &}.

By Theorem 6.1, if £ has (o) - continuous norm then # gives rise to an
orthogonal decomposition E = @ £+ known in Banach lattice theory as band
decomposition. See [LT2] or [S2].

In what follows we shall be concerned with the geometric consequences
of Theorem 6.1. ‘

Let F be a subset of K. The complementary set F* of F is defined as the
union of all (« -) faces G contained in (cone F)*.

6.4 PROPOSITION. Suppose that the norm E is « - continuous and let F be a
closed face of K. Then for every x € K there exist scalars A, p e [0,1] and vectors
ue Fandve F¢suchthatx=Au+ pv.

Proof. The cone C generated by F is convex and closed, so by Theorem 6.1
there exist p e C and g€ C such that x = p + ¢. Since P,q «xand x € K it follows
that ||p||, lg]l < 1. If p or g is 0, the proof ends. If p # 0, and q # 0, then

x=lol- - +lal--2-

andu=p/||p|leF.Since C(q) N C= {0} face {g/ llgll} N F= and thus
q/llglle Fe.m

The case where E = £ *(2,R), «= «_and F = face E, [ S shows that the
result of Proposition 6.4 is the best possible in the sense that the scalars A and p
may be arbitrary in [0,1]. On the other hand, in the case where « = «,, Proposition
1.6.4 shows that every x € S is a convex combination of a point of F and a point of
F<. This was first noticed in [AE], p.108.

7. THE CENTRALIZER

In this section will shall attach to each Banach space E endowed with an AE-
order relation « a certain C” - algebra of operators on E, called the centralizer. The
importance of this construction will become clear in the next sections by
considering the reversed process. :

The idea is to associate to « an order relation on L(E,E) by letting S « Tifand

only if Sx « Tx forevery x € E.
This new order relation satisfies all the conditions in Definition 1.1 above

when L(E,E) is endowed with the family of all seminorms p,:T—>|Tx|,xe€E.
Consider the facial cone generated by J,
Z(E),={T|Te L(E,E), T « ol for a suitable o > 0}.
The centralizer associated to « is defined as the principal ideal generated by /,
Z(E) = Span Z(E),
Notations like Z (E), Z,(E), etc, are intended to underline that the order relation
under consideration is « respectively «, etc.
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By Lemma 4.5,
Z(E)={T| T L(E,E), T + ol « BI for some at, B 2 0}.
Since the results in section 4 remain true (with a similar proof) for locally

convex spaces, we infer that Re Z(E) is an ordered Banach space with respect to the
cone Z(E), and the norm || ||, associated to the strong order unit /. It is also clear that

S,T e Z(E), implies ST € Z(E),

7.1 PROPOSITION. Re Z(E) is a commutative Banach algebra algebraic,
isometric and lattice isometric to a space C(,R).

In the complex case, Z(E) is the complexification of the Re Z(E) and thus it
is a complex Banach lattice and also a complex Banach algebra with respect to the

modulus

|S+iT|=sup (cose)-S+(sin6)-T|

0<6<2n

and the norm
|S+iT]l, =S +iT |||

where S,T € Re Z(E).
7.2 THEOREM. i) Z(E) is a commutative Banach algebra and a Banach lat-

tice that is algebraic, isometric and lattice isometric to a space C(Q, C).

ii) The norm || ||, and the operatorial norm coincide on Z(E).

Proof. The assertion i) follows from Proposition 7.1.

ii) By 1), it suffices to prove that || || and || ||, coincide on Re Z(E). For, let
T e Re Z(E) and suppose that o = || T||, =inf {A [Ae R, T < Al}. Then for
each € € (0,0) there exists a Ue Re Z(E) such that 0 < U<, U#0and TU 2
>(a-€)U20ie., (a-€)U«TU. Since U # 0, there exists an x € E such that
y = Ux # 0. Then (a - €)y « Ty, so by Proposition 1.2 i) |7y | 2 (a - )|y |l
Consequently, || T|| > a - &. The fact that o = || T ||, < || T'|| follows from Lemma 4.5
and AES). B

By Proposition 7.1 above, all operators 4 in Re Z(E) are self-adjoint. In fact,
|le|| = 1 for every € IR.

The operators in Z(E), are diagonal in the sense that they leave invariant
every hereditary cone of E. Consequently, for every 4 € Z(E),, x « y implies
that Ax « Ay.

If T is an arbitrary operator in Z(E) then T(E ) C E, for every x so that every
ve Ex E is an eigenvector for T. This connection between spectral theory and
geometry will be used in section 10 to prove Hilbert-Schmidt type theorems for
operators acting on Banach spaces. It is clear that when Z(E)\{0} contains no com-
pact operator then Ex E must be the empty set.

7.3 PROPOSITION. Z(E) is a full subalgebra of L(E,E) i.c., if T exists in
L(E,E), then T"' € Z(E).

Proof. Let Te Z(E) such that T ! exists in L(E,E). We shall prove that there
exists a constant o > 0 such that | T'| > a. If this is not the case then forall ne IN*
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we have (/ - n| T|)* > 0 and thus there exist u, € Eand A > 0 such that
v,=(-nTN*u #0; v.«lu .
Since T € Z(E),
U-nT)v,=-n|T)" v,

which yields
v,=n|T|v,+{I-n|T|) v .

Particularly, n|T| v, « v for all n. Then
IV =TTV, | <N THHITv, I <20 T T v, || < ITA-@/m) v, |

which yields ||7]| 2 n/2 for every n € IN®, a contradiction. We used the fact
that 7* « |T'| and thus || Tv || <2|| | T| v|| for every ve E. ®

7.4 PROPOSITION. For each x € E the map T — Tx is a lattice morphism from
Z(E), into E.

In fact, it suffices to prove that for every S,T € Z(E)* we have
sup{S,T}x = sup {Sx,Tx} which follows the lemma below:

7.5 LEMMA. Let S,T € Re Z(E) and x,y € E such that Sx « yand Tx « y. Then
sup{S,T}x « y.

Proof. We shall identify S and T with their images in C(©2,R). See Proposi-
tion 7.1 above. For € > 0 given, consider the sets

Q ={o]eoecQ So)2T(o) and Q, = {0 |0 € Q, T(0) = S(0) +&}.
Then there exists a Ue Z(E) suchthat 0< U</, Un =1 foro € Q, and Uo =0 for
@ € Q,. Then

sup{S,T} +el>2 US + (I- U)T > sup{S,T} - €/
ie,US+ (I - U)T-sup{S,T} + €l « 2el. Then
USx + (I - U)Tx - sup{S,T}x + ex « 2ex

so by AES) and the fact that € > 0 is arbitrarily small we obtain that
sup{S,T}x=USx+ (- U)Tx«y. &

7.6 PROPOSITION. Suppose that there exists a weaker locally context Hausdor(f
topology < on E such that:

i) every « - downwards directed net of elements of E contains a 1 - conver-

gent subnet.

ii) every « - interval [u,v] is 1 - closed.

Then Z(E) is order complete.

Proof. By Proposition 7.1 it suffices to consider downwards directed nets
(T.), of elements of Z(E),. Then for each x € E the limit Tx=1 - lim T X exists in
E.Tt’is clear that Tis the « - glb.of (T,) .=

Proposition 7.6 applies in each of the following cases:

— the norm of £ is « - continuous

- «=«, and E is a dual Banach space.
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See Corollary 6.3 above.
If E is a regularly ordered Banach space, then

Z (E)={T| Te L(E,E), -al < T < ol for a suitable o > 0}.

This case was first considered by Wils [Wi] who noticed also the connection
with the notion of center of a C" - algebra.

The following special case is very illuminating. Let S be a compact Hausdorff
space and T € Z,(C(S, R)), i.e. Te L(C(S, R), C(S, R)) and 0 < T < af for some
o > 0. We shall show that T is a multiplier i.e., T is of the form Tx = ¢-x for some
0< @<oain C(S, R). In fact, for each s € S, the functional F, : x — (T x)(s) satisfies

the inequality
IF,(x)|<a|x(s)], xe C(S, R)

which yields a @(s) € [0,a] such that F(x) = @(s)-x(s) forall x & C(S,R); ¢ belongs
to C(S, IR) because ¢ = T(1). Consequently the map

D: ZO(C(S, R)) - C(S, R)
given by ®(T) = T(1) is an algebraic lattice and isometric isomorphism. Notice
also that Z (C(S, R)) = Z,(C(S, R)). '

7.7 LEMMA. Let E be a Banach lattice and T € Z (E),. Then |Tx|= T|x| for
every x € E i.e., T is a lattice morphism. *

Proof. By hypotheses, there exists an a > 0 such that 0 < T'< o/. See also
Lemma 1.0. Then ox|=|Tx| + |ox - Tx| < T|x| + (&l - T)|x| = ot|x| which yields
|Tx|= T)x| foreveryxe E. R

An element u > 0 of a Banach lattice E is said to be quasi-interior provided
that E_ is dense in E. [f u is quasi-interior, then the map T — T'| E, is an algebraic
lattice isomorphism from Z(E) onto Z(E, ). Since E, is a space C(S, R) we infer that
Z(E)S E, as Banach lattices. Consequently

Z (LA(p, R)) = L7(p, R)
for every positive finite measure p and every p € [1,0]. Notice also that
Z(L(p, R) =Z (L'(4, R)).
Since (2, IR) and ¢!(2, IR) are isometric Banach spaces,
Z,(*2,R)) = Z,(('2,R)) = ZO(Q’(Z,IR)) = 1°(2,R)
and Z,((*(2,R)) = (*(2,R).

8. CUNNINGHAM PROJECTIONS

The aim of this section is to discuss a class of idempotents canonically
associated to a given 4E-order relation « on a Banach space E.

8.1 Definition. A projection P € L(E,E) is said to be a (« -) Cunningham
projection provided that Px « x for every x € E.
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The images of (« -) Cunningham projections will be called (« -) summands.
Clearly, 0 and [ are Cunningham projections. By AE1), if P is a Cunningham
projection so is I-P.

We shall denote by IP(E) the set of all (« -) Cunningham projections on E;
sub-scripts should be used in order to avoid any confusion.

8.2 PROPOSITION. The Cunningham projections on E are precisely the
idempotents of Z(E). R

Proof. If P € IP(E), then P « I and thus P is an idempotent of Z(E).
Conversely, let P e Z(E) = C(2, K) such that P2 = P. Then P is the characteristic
function of an open-and-closed subset 4 of Q. By Lemma 4.4 above, since 0 <y e
it follows that P =y, « I'in Z(E).

The predecessors of our definition are the L and M - projections introduced
by Cunningham. A projection P € L(E,E) is said to be an L-projection if
||| = || Px|| +||x - Px || and M-projection if || x|| = || Px || v || x - Px|| for every
x € E. Clearly, the L-projections and the «_-projections coincide. The correspond-
ing result for «,, is stated below:

8.3 PROPOSITION. Let @ be an isometric vector norm with RDP on the
Banach space E and let P € L(E,E) a projection. Then the following assertions are
equivalent:

i) P is an «,,  -projection;

i1) (Px +y) < @(x +y) v @(y) for every x,y € E;

iii) @(x) = @(Px) v @(x - Px) for every x € E.

Proof. Clearly, i) <> ii) and iii) = ii).

ii) = iii). Notice first that @(Px), @(x - Px) < ¢(x) for every x € E. On the
other hand, @(Px + (I-P)y) < (y + P(x - y)) < @(y) v ¢(x) for every x,y € E,, which
yields @(x) = @(P*x + (I-P)x) < @(Px) v @(x - Px) for everyxc E. B

Other examples of Cunningham projections are indicated below.

8.4 PROPOSITION. Let E be a Banach lattice. Then the «_ - Cunningham
projections on E are precisely the band projections on E.

Recall that a band projection on E is any positive projection P on E such
that |x - Px| A |Py| =0 for every x,y € E.

Proof. Clearly, the band projections are «_ - Cunningham projections.

Let Pbea« - Cunningham projection. By Lemma 7.7, P and I - P are lattice
morphisms so that in order to establish the relation |x - Px| A |Py| = 0 it suffices to
consider the case where x > 0 and y > 0. Or, in the later case,

0<(x-Px) APy<PyeImP
0<(x-Px)APy<x-PxeKerP

which yields (x - Px) A Py=0. R

8.5 PROPOSITION. Let H be a Hilbert space and A the von Neumann
algebra generated by a self-adjoint operator A € L(H, H). Then the « - Cunningham
projections are precisely the orthogonal projections belonging to 4.

Proof. Let P € IP_(H). Then for every x € H there exists a B € «such that
0 < B <Iand Px = Bx. Consequently P = P" and P belongs to the wo - closure
of Zi.e. to A

The converse is clear. B
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One can prove (see [4E]) that the M-summands of any von Neumann algebra
. are the weak closed two-sided ideals of & The following two results describe
geometric properties of Cunningham projections.

8.6 PROPOSITION. Let P be a « - Cunningham projection on E. Then P maps
every « - facial cone C of E into a « - facial cone P(C) contained C.

By Lemma 4.1, either P(C) = C or P(C) c Fr C.

8.7 PROPOSITION. Every two « - Cunningham projections commute.

Proof. The image of every « - Cunningham projection is « - hereditary. In
fact, y « x € Im P yields (I-P)y « (I-P)x = 0, so that y = Py € Im P. Since the
Cunningham projections leave invariant the hereditary cones, for each two
Cunningham projections P and 0 on E we have PO(E) C O(E)i.e., PQ=QPQ. By
replacing O with /— O we obtain also that P(/— 0)=(I-QPI-Q)i.e.,QP=0PQ.
Consequently PO = QOP. & !

The following result shows that Cunningham projections are IR - determined.

8.8 PROPOSITION. Let E be a complex Banacl space endowed with an
AE-order relation «. Then E and E y, the underlying real space, have the same
« - Cunningham projections and thus the same « - summands.

Proof. It suffices to show that if P € L(E, Eg) is a « - Cunningham
projection then P(iPx) = i P(x) for every x € E.

For notice that the map Q : x— -iP(ix) defines a « - Cunningham projections
commute, P(iP(ix)) = iP(iP(x)) for every x € E.

Given x € E, put'y, = Px +iP(iP(x)) = -i[LP(x) - P(iP(x))]. Then Py_=y, and
P(iy) = 0. Therefore y, = Py, +iy) «(1+1i)y,soby Corollary 1.4 it follows that
(1 - 1)y, « 2y,. Consequently -y = (FP), - 1, ) « 2(I-P)y,=0ie,y =0.1

8 9 PROPOSITION. 4 closed subspace F of E is a « - summand if and only
if there exists a closed subspace G of E (In fact G = F*) such that E = F
® G algebraically and x || y for every x € E andye G.

Proof. In fact, if F is the image of the « - Cunningham projection P on E,
then we can choose G = (I - P)(E) = P(E)*. Conversely, the natural projec-
tion P F ® G — F is linear and satisfies the condition P « [ i.e., P is
a « - Cunningham projection . H

In general, the complementary set F* ofa subspace F ' may be not a subspace.
If P is a Cunningham projection then P(E)* = ({ - PX(E) i.e., the complementary
set of a summand is also a summand.

8.10 CoroLLARY. Let F be a « - summand of E. Then there exists a unique
« - projection P on E whose range is F.

8.11 PROPOSITION. The following assertions are equivalent for F a closed
subspace of E:

i) F is a « - summand,

ii) F satisfies the following two conditions:

ii,) (Riesz decomposition property). If h « u + vin E and h € F then there
existj and k in F such that h =j +k, j « u, k«v,

ii,) For each x € E the set {y|ye F,y«x} hasalub.inF.

iil) F satisfies the conditions ii,) & ii,) above and also the interpolation property
(ie., ifmn «xwithmn € F andx € E then there exists ap € F such that m,n « p «x).
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Proof. Clearly, i) = iii) and iii) = ii).

ii) =1i). Forxe Eput Px=sup {y|ye F, y «x}. Then x — Pxe F*. In fact,
if the contrary is true then it would exista z € F, z # 0 such that z « x — Px. Since z
«x — Px, Px «x and x — Px « x it follows that z + Px « Px, a contradiction.

F*is a vector subspace. In fact, let u,ve F* andxe F withx « u + v.
Because of ii ) and the fact that F'* is hereditary we obtain that x = 0 and thus
utve FL. Ciearly ue F* and a € Kimplies au € F1 . Consequently F* is a
vector subspace and the map P : x — Px is a « - Cunningham projection.

For E an order complete Banach lattice and « = «, » Proposition 8.11
reads as follows

8.12 PROPOSITION. (see [S2]). Let E be an order complete Banach lattice. A
closed subspace S of E is a projection band if and only if Sis a closed lattice ideal
such that A c S and sup A = x exists in E implies x € .

9. BOOLEAN ALGEBRAS OF PROJECTIONS

Let £ be a Banach space. By a Boolean algebra of projections on £ we
mean any Boolean algebra & of mutually commuting idempotents of L(E,E) with
respect to the following operations:

PvQO=P+Q0-PQ
PAQ=PQ
t=]-P
A Boolean algebra & of projections on E is said to be equicontinuous

provided that sup {||P|| | Pe &} <.
A Boolean algebra & of projections on E is said to be Bade complete

provided that for every family (P)), of elements of 7 there exist v P _and AP in
2 and moreover
(VR )(E) = SpanUP, (E)
(AENE)=Fu(E) -
By Proposition 8.7 above, the set IP(E) of all « - Cunningham projections on
E constitutes a Boolean algebra. These projections P are bicontractive in the sense
that ||P||<1and ||2P-| < 1.
See Propositions 7.1 and 8.1. Particular cases are
IP, (E), the Boolean algebra of all L - projections on E;
IP(E), the Boolean algebra of all M - projections on E;
IP_(E), the Boolean algebra of all band projections on E (E is supposed to be

a Banach lattice);
IP_(H), the Boolean algebra of all orthogonal projections belonging to a com-

mutative von Neumann algebra & of L(H,H) (H being a Hilbert space).
IP,(E) and IP (H) are examples of Bade complete Boolean algfabras.of
projections. IP (E) is Bade complete provided that E is a Banach lattice with

(o) - continuous norm.
IP,(E) is order complete provided that E is a dual Banach space.
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As a matter of fact, all important examples of Boolean algebras of projections
come through Alfsen-Effros theory via a renorming process described below.

9.1 LEMMA. Let B be a Bade complete Boolean algebra of projections on E.
Then P, T P in B implies P, —S0_, P. L

Proof. Let x € E and let & > 0. Since P(E) = SpmyPa(E) , there exists indi-

Px— Z": X,
i=1

<E€.

ces a,,...,a, and vectors x,,....x, such that P, x, = x, and

Leta>a,,...,a and put y= le. . Then P_(y) = y and
=1
|1P,(x) - P | < 1P %) -yl + Iy - POx) || =
=P, PG)W I +y-Pl)| <2e. ®
9.2 LEMMA. (Bade [B1]; see also [DS], ch. XVII). Let B be a Boolean
algebra of projections such that for each sequence (P ), of B there exists VP, in
B. Then RB is equicontinuous.

Given an equicontinuous Boolean algebra & of projections on E we can
consider the Banach algebra € (%) generated by it in L(E,E). €(B) is a
commutative Banach algebra with unit /, called the Bade algebra generated by .

By Proposition 8.2, €(IP(E)) c Z(E).

The other inclusion needs additional assumptions. In fact,

@ (P (C([0,1],R))) = R -T and Z (C([0,1],R)) = C([0,1}, R).
9.3 LEMMA. Suppose that Z(E) is order complete. Then €(IP(E)) = Z(E).
Proof. By Theorem 7.2, we can identify Z(E) with a space C(€,IK). Since
C(Q, KK) is order complete, the subalgebra . (of all finite sums of the form Z OXy

where A" s are mutually disjoint open-and-closed subsets of €2) is norm dense; use
Stone-Weierstrass approximation theorem. Or, & = Span IP(E) and thus

CP(E)) = Z(E). W

It is worthwhile to mention that given an Boolean algebra 3 of equicontinuous
projections on E, the map

x = ||xl, = sup{ll Px|l, | 2Px - x|| | P € B}

is an equivalent norm on E and each P € & is a bicontractive projection on (E, || ||,).

Suppose now that 3 is a Boolean algebra of bicontractive projections on E
and S is the Stone space of &; & is isomorphic to the Boolean algebra 9P of all
open-and-closed subsets of the compact Hausdorff space S. For 4 € 9, we shall
denote by P, the corresponding projection in %. Consider the linear span L, of all
characteristic functions x,, for 4 € 9. For each f€ L, f# 0, can be represented

uniquely as a finite sum f = Zaix ,» Where the sets 4, € 9 are mutually disjoint
and non empty. The mapping
®:L - Span &

| (D(ZaixA') = ZGI.PA’

given by
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belongs to 7 and thus it is a « ,- Cunningham projection. Since (HS) yields
4= D°M\P,
Pl

is the norm topology of L(H,H), it follows that 4 € Re Z ().

It is remarkable that the result above remains valid in the general setting.

10.1 HILBERT-SCHIMDT GENERALIZED THEOREM. i) Let E be a Banach space
endowed with an AE-order relation «, such that the norm of E is « - continuous.
Then for every compact operator A € Re Z(E) there exist a real sequence (o.), € €,
and a sequence (. ), of mutually disjoint finite rank Cunningham projections on E
such that A(x) = Zan P (x) for everyx e E.

ii) Conversely, every operator A € L(E,E) that admits such a representation

is compact and belongs to Re Z(E).
The assertion ii) is an easy consequence of axiom AE4). In fact, it suffices to

consider representations
A(x)=2 e, b ()

where (o), € (¢,), and (P), are sequences of mutually disjoint finite rank
Cunningham projections. Then by AE4),

” A(x)—gakpk(x)

< .
(k;l;l}il‘ i D II
foreveryne Nand x € E.

The assertion i) will be obtained by cutting 4 in smaller pieces. We shall
need the following special case of Glicksberg - deLeeuw decomposition theorem
(see [Kr], 2.4.4, for the general case):

10.2 LEMMA. Suppose that E is endowed with an AE-order relation «,
that makes the norm of E « - continuous. Let A € Re Z(E), with |4 || < 1. Then
(4"), converges strongly to a Cunningham projection P such that PA=AP =P

and Im P = Ker (I - 4).

Proof. By Theorem 7.2 ii) above, we have 4 « I. Since the norm of E is « -
continuous, the limit Px = nlgnooA”x exists for each x € E. That gives raise to an
operator P such that P « /. We shall show that P is also a projection (and thus it is
a Cunningham projection). Forx € Eand &> 0 given, choose an n € IN for which

|| 4% - Px||<€/3 and [4"Px - P’x|| <&/3

<

?’kPk (x)

if k, m > n. Then
| P2x - Px|| < || P’x - A"Px|| + || A"Px - A"A™x || +
+||A"4"Px - Px|| <
<gf3+¢e/3+e/3=¢,
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which yields the fact that P2’= P. The others assertions in the statement of Lemma
10.2 are straightforward.

10.3 COROLLARY. Under the above assumptions on E, for each compact
nonnull operator A in Re Z(E) there exists a finite rank nonnull Cunningham pro-
Jjection P such that PA=AP =P and Im P = Ker (||4 |- - A).

Proof. By Theorem 7.2 ii) above, we have 4/|| 4 || « I, so the existence of P
is assured by Lemma 10.2. Since 4 is compact and self-adjoint, ||4] is an
eigenvalue and thus Im P # {0}. P is finite rank, as being compact. B

Now, to derive assertion i) in Theorem 10.1 from Corollary 10.3, we have to
choose o = || 4| and P, = P. Because 4 = AP + A(l - P) = o. P, + A(I - P,) the
cutting procedure will continue by replacing 4 by A(/ - P).

An alternative proof of Theorem 10.1 can be found in [N5].

By combining Theorems 5.10 and 10.1 we obtain the following:

10.4 PROPOSITION. Under the assumptions of Theorem 10.1,

_ ImA=Span[(ImA)N(Ex E))].

In other words, Im4 is generated by its « - extreme points.

10.5 CoroLLARY. If E has « - continuous norm and Z (E) contains a compact
nonnull operator, then Ex E is nonempty.

Since L'[0,1] has no atom, from Corollary 10.5 we infer that the only
compact operator T : L'[0,1] = L'[0,1] with0< T<[is T=0.

The converse of Corollary 10.5 is false. Think at the case where
E=1L1%[0,1] and « = «,.

Suppose now E is a Banach lattice whose order intervals [0,x] are compact.
Then a result due to Walsh [Wh] asserts that E is discrete (i.e., it has an uncondi-
tional basis consisting of atoms). To derive this fact from Theorem 10.1 it suffices
to restrict ourseves to the separable case and to remark the existence of a positive
element « in E and of a compact operator 4 in L(E,E) such that

E =TmA = Span[0,u] and0< A <1,

A natural question arising in this setting is the following:

10.6 Problem. Let E be a Banach space endowed with an 4E-order relation
« and let z € E such that the « - order interval [0, z] is compact. Can each x € C(z)
be represented as an unconditional convergent series

X = ce
nn

with ¢, 2 0 and e, € Ex E (1 C(2) suitably chosen?

The classical Hilbert-Schmidt theorem covers all orthonormal expansions
because every orthonormal basis of a Hilbert space arises as the fundamental sys-
tem of eigenvectors of a suitable self - adjoint compact operator 4 € L(H,H). What
type of decomposition Theorem 10.1 yields? .

Under the assumptions of Theorem 10.1, E = Im4 @ Ker 4 constitutes an
unconditional decomposition of lattice constant 1 and the subsequent

decomposition of ImA A constitutes an unconditionally finite dimensional
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decomposition of lattice constant 1. That is explained in [N5]. One can prove that
(via a renorming process) all complemented subspaces having an unconditional
finite dimensional decomposition arise in this way i.e., via Alfsen - Effros theory.

Our final remark is that one can rephrase Theorem 10.1 in terms
independent of any order-theoretical structure. In fact, by Theorem 9.5, it can
be restated as follows:

10.7 THEOREM. Let &B be a Bade complete Boolean algebra of projections
on the Banach space E and let A € € () a compact operator. Then there exist
a sequence (o), € ¢, and a sequence (P), of finite rank mutually disjoint

projections in such that
A= Za”Pn ’

in the norm topology of L(E,E).
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