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EACIAL STRUCTURES FROM THE ORDER. THEORETICAL
POINT OF VIEW

CONSTANTIN P. NICULESCU

The aim of this paper is to outline a large generalization of the convexity
theory, based on the study of certain order relations, geometrically determined.
That will allow us to bring together appeareirtly unrelated facts and results and to
explain the similarity between several domains of functional analysis.

The present paper has been circulated in the early 90's as a preprint, entitled
Lectures ofAlfsen - Effros theory.

I. ALFSEN.EFFROS TYPE ORDER REI.ATIONS

LetEbe a Banach space over the field K (lK is IR or (D).

l.l DBrnurIoN (see tN21). An order relation < on E is said to be of Alfsen-Effros
type (abbrwiated, < is an AE-order relation) provided thatthe following conditions
are satisfied:

AEI).r <y implies y-x << y;
AE2) x < y implies ctrc << qy for every a elK;
AE3) 0 < cr < B in IR implies o;r << Bx for every x e E;
ABI) Ifx, <lv!2<ll2!ldlt<<!r*y, thenx, < xr* xrandxr* tzr<yt+ yz;
AE5).r + y r<2y implies llrll < lhll;
AE6) xo << y (a e A) and lh" - "ll -+ 0 implies .r < y.
Clearly, the definition above can be adapted in an evident manner for locally

convex spaces with a specified system of seminorms. Also, one can rephrase the
conditions AEI) - AE6) above in terms of codirection by leuing

x lly (i.e., x and y are codirectional) if and only if x << x+y.

The next proposition collects immediate consequence of Definition l.l.
I .2 PnopostTtON . Let E be a Banach space endowed with an AE-oder rclation

<<. Then:
i)0<<xforeveryxeE;

ii) x <y and -x <<y implies r = 0;
iii) x < y implies llxll n ltyll,
w) x ll y implies yllx and crx I Byfor every &, B > 0.

From Proposition 1.2 i) we infer that an AE-order.relation is' not
compatible with the linear structure. As we shall show in the next sections the
AE-order relations are very suitable to describe the geometry of the unit ball of
the underllng Banach space.
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1.3 PROpOSITION. The one-dimensional Banach space K admits only one

AE-order relati on, name lY

x <<yif and onlyifx=ay.for a suitable o e [0,1]' . ie.
proof. We shali consider here only the complex case. Suppose that r,e--'<

,rrrlni,*lirr" 11, tz> 0 and 0,, 0, e [0, 2n).By proposition l '2^iii), we obtain rt <

;; *d'#itiri'ebZl above ir"d, ui io the case where eio << r for some r 2 I and

0 e [0, 2r). We have to PPve that 0 = 0'' -'i"t, 
!n < r yields t^t,1 r' for every n e IN, so bV APt) and Proposition l'l'2

iii) aUo"Jwr oUtiin ry - "i'q 
< / (and'thus l- Ztn cos n0 < 0)for every n e IN, a

contradiction. I
I .4 CoRoilARy . If E is a fuuch spce endovred with an AEoder rclntion << tlrcn

o < P in Kand x <<Y in E imPlY ox <<PY'

Deeper examples come in connection with the facial structure of a Banach

,pu"r-f-u[d ttt"y "itt first considered by Alfsen and Eftos [AE]:

x 9v if and onlvfltvll = llxll + ltv - rll'

(IfE is strictly convex this means that the points 0, x, y are colinear and x is between

0 andy);

x <<u! if and only if every closed ball containing 0 and y contains also x'

Notice that

x Wyif and only if llx-zll < llzll v l[v-zll for every z'

The verification of AEI)-AE5) above for <9 needs only the triangle inequality;

e.g., AE4) can be deduced as follows. By hSpotheses,

Itvrll = llxrll + ltvr - xrll, ltvzll = llx2ll + lVz - xzll

and l[y,+yrll= llYrll+ ltYrll. Then

llyr +yzll 3llyr + yz- rr - xzll + llrt + rrll <

< llyr - rrll + llrrll + ltvz - r2ll + llr2ll <

< llvrll'+ llvzll= llYr +Yzll

which implies that x, * xz <<r I r + y, and x l <<L xr + x2'

The geometric meaning of (M is much more involving. For example, the

condition lgt) *ottt that symmetrical balls contain symmetrical points'

Except for AE4), tlre iact that <<M is indeed an AE-otdet relation is simply

routine. As concernt AfC;, we know a simple argument only for the following

statement xl <<u ! r, xz W lzand 1 <<u h + lzimplies x1 * xr <<u h + !z' In fact our

hypotheses are

llrr - zll < llzll v llh - zll
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' lF, - zll < llll v llyz - zll

llyz- 4l< lkllv llh + !z- zll

for every z e E. Then by applying succesively these relations, we infer that

llrr +rz -zll<llz -rzllv l!z+ yt - rll<
< lpll v llyz- zll v l[r - zllv llx + yr- zll3

s lkll v lln+ yz-'ll
i.e.,x, +xr<<ryt*yr.

The other part of AE4) combines Theorem 1.9 belorv rvith the remark that
o:rly the real structure of E is involved in AE4). We shall need some background on
Choquet's theory. The details omited are to be found in [ph]. Another proof of the
fact that <<1a is anA&-order relation appears in [NV2].
. -- fot K a cornpact convex subset of a locally convex Hausdorff space z, rve

shall denote by A(K, R) th9 Banach space (endowed with the sup norm) of all
continuous real affines functions/: K+ IR.

1.5 Lpt',rua. For eache> 0 and each h e A(K,R) there exist z' e z and
a e IR withllh - (z'+ o) lKll< e.

Proof. Consider the following two subsets of Z x ts:

Mr= {(x,r)lx e K, h(x) = r} qur.dM2= {(x, 4 lx e K,h(x)= r+e}.

M, and M, are both compact convex, non-empty and MrfiM, = e.By Hahn-
Banach separation theorem, there exist a continuous linear-functional Z on Z x IR
and a real number l, such that sup L(M) < l. < int L(IL). Then rve can define a
function g 9n Zby the formula L(xS@D = l, i.e., L(.r,O) + g(x).L(0,1) = 1,. Then
geZlK+lRandh<g<h+e.r

1.6 conorunv. Let E be a Banach space and K the mit ball of E, endowed
with the w'-topologt. Then

.,4(r(,R) = {x lK+ r{x e d r e IR}.

Let qn, be the set of all probability measures on K. we shall say that a
measure p e flK) rep,esents the point x ofr(provided that

Nh) = h(x) for ertery h e .,{(rK, IR).

^lJ Lmnrae. A point x of K is extremalfor K if and onty if the only meastue
p e qn whtch represents x is the Dirac measur.e concentrited in x.

Given a functionlf e C(iK,lR), rve shall denote by ,f ity eperenveloppe,
j@)=inf {}(x) lh eA(K,R),h>J},x e K.

1.8 LENdtvIA. For everyfe C(r(,lR),

f (x) = sup {p(, I p rcpresents xl.
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1.9 T!DoREI\,i .I*t E be a rcal Banach space and letExE be the set of all

extreme points ofthe"iiriiiX"in,.Thenthifoltowtngassertions are equivalent

for x an7 Y two elements of E'
l)x wY;
ii)x< fi\onK;
11i) For every e' e Ex E either0 3 e'(r) 3 e'(y) or e'$fiS e'(r) 3 0'

proof.i) + ii). l-et E,(z')be the closed ball in E of center z and radius r > 0.

The fact-that u . i,Q)is equivalentto v S z t r on K'Consequently 0 andy belong

,o 
.n,,@if 

and onlyifb u i < 
"+ 

r and thus i) is equivalent to the assertionthat if

z e Eand r ) 0 are suchthat 0 v.y < z * r thenx 3 z *r' By Corollary l'5 above'

wery continuous affine majorant oro t, lz has the form z + r, so the latter assertion

is equivalent to ii).- ---_Th" 
implication ii) + iii) follows from pmmata 1.7 and l'8 above'

iii) + l). Let fLn"', u *o"o combination of elemeirts e'' of Ex g ' Py
hypotheses, for eve{n inir, 

"*irtr 
an cr,, e [0,1] such that e'n(x) = dne'n(fi-

ionseq"e"tly, if oY e F,1z; ttren

lLx,"l(, - 4=Zx ^o,1" 
l,(t - )+2lr'" (r - a 

" )e; (z) <

< )l.nclor + )1"(t -c,)r = r

and thus by Krein-Milman Theorem it follows thatr e Blz\' l 
,

Inlgs3tn""otnorbasremarked(seetN2l)thatttreAEI)-AE6)
above are fulfilled in the context of Banach lattices by the order relation <o '

r <,y if and onlY if [Yl = lrl + [Y - xl'

LlO LBmrae . Let E be a Banach lattice. Then the following assertions are

equivalent:
i) x <."Y;

it) r* 3Y* andt <Y;
iit\ Overy order intirval fu,v'l of E.containing O and y contairut also x'

i*"t if =+ ii). In fact, froml it* * (v - r)t and M = lrl + ly - rl it follows that

f:f+(v-x)*.' 
ii) ii;. Ct*rty, y'x=(1f -x+)-(1r-r)and0<(v* -x*) n (y-'r) <y* n{ =0'

ConseqnentlY (Y'fi'=f -f '
ii) + iii). lf 0 and y are in [n,v] then 0 < y* < v md 

1t 
3'y-<0' Consequently'

lf f < fther 0 < .r* ( v and u < $ < 0, which implies that z ( r < v'

iii) + ii). O anay Ua""g t" t-lty*l i if t Ueto"gs also to this interval then x 3 y*

and-t- <r. ConsequentlYr* <l' l-
We can extend the-definiion of <, to cover the class of all regularly ordered

Banach spaces (in the sense of Davies [D])'
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By arr ordered Banach space we shall mean any real Banach space E endowed
rvitlr a closed cone E* which is convex, proper and E = E* - E*; on E we consider the
ordering associated to E*i.e., r sy if and only ify -x e E*. An ordered Banach
space E is said to be regularly ordered provided that the following two conditions
are satisfied:

Rl) If -y <x <y then llxll< l[yll;
R2) If x e E and e > 0 then there exists a !, € E such that -y, < r < y" and

Ity,ll< llrll + e.

Examples of regularly ordered Banach spaces are:

- the Banach lattices;

- the ordered Banach space.r4"o of all self-adjoint elements of a c* - algebra;

- the Banach spacer4(r(,lR) when endorved with the pointrvise order;

/ any- ordered 
aBanach space E with a strong order unit z > 0

[i'r., 
r =Uof-ru, "l), *^the norm coincides with the norm associ ated, to u,

llrll" = inf {I I I > 0, -}'u 3 x < }ru).

On a regularly ordered Banach space E we consider the AE-order relation
<, given by

x <.y if and only if every oider interval [z,v] containing
0 andy contains also r.

The proof that <o is indeed an AE-order relation needs the fact that every
regularly ordered Banach space is locally a space A(K,IR). The basic ingredient is
the following

L 1l Tmonru (see [Kad2]) . Let E be an ordered Banoch space with a strong
order unit u > 0 such that the norm on E is the norm associated to u. Then the sit

K = {x' lf e E, x'(u) = I = lpll}

of all states on E is w'-compact, convex and the map T : E A(K,R) given by

(Txh'=x'(x),x eE,x'eK
is an algebraic, isometric and order isomorphism.

Proof. A well known theorem due to Alaoglu shows that K is w'-compact.
Clearly, it is also convex. lf 0 <x < nu for some n e IN, thenllnu - xll< n, so for each
x'e Kwehave lx'(na)-r'(r)lSn. Consequentlyx'(x) > 0 forr> 0.

For r e 4 put a(x) = inf { l, I I > 0, x 3}," u}.Then o(Lr) > l,.cr(x) for every
)u e IR. Suppose that r and n are linearly independent. Then the functional x'given
on Span{x,n} by the formula r'(Lr + Fz) = I.c(x) + p is linear and satisfies the
relation x'(u) = I = llx'll; via Hahn-Banach extension theorem r' gives rise to an
element ofK. The above reasoning shows that ?nis a linear isometry andx > 0 if and
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only if Tx 2 O.Then in ofder to prove that tn is an onto map it sufftces to shows

thui the image of tnis dense inr{(K,R). In fact, by Lemma l'5 above, for

every n e i1f,W) and every e > 0 there exist x e E and r e IR such

thatlll -T(x+ rz)ll <e. I
we can now prove that every regularly ordered Banach space E is locally a

space r4(r(,lR) In fact, for every x e E,x ) 0, we can consider the principal ideal

generated by r,

Er= {!ly e E 'ox <y < crx for a suitable cr > 0}

endowed with the induced order and the norm ll ll" associated to the strong order unit x,

l[Yl[ = inf{cl I -q'r <Y < cu}'

By Theorem I . I l, E, is algebraic, isometric and order isomorphic to a space ''4 (K',lR)

for a suitable compact Hausdorffconvex space.K'. Since ty < l[yll''r for everyx with

x2ly,the regularity of the norm of E yields

Itvll= inf tltvl[' lltll lx > 1Y].

l.12 LBrvnra . Thefoltou'ing assertions arc eEtivalentfor x and y two elements

of a space ra(KIR):
i) x <<"y;

ii) x <y Y;
iil) Foi each s e K, either 0< r(s) Sy(s), or y(s\ S x(s) < 0'
pioof.The equivalence ii) <+ iii) follows from Theorem 1.9 above. Clearly'

D - lli =+ i). Irt 0y e fuyland s e K. Ifo < r(s) <ls)then z(s) < 0 <t(s) </G) <

<(s).ff;,(s) <rttl ioAett (s) <ls) <x(s) < 0 < (s)' Consequentlv x e lu,vl' I
1.13 ConOr,Uny . Let E be a regularly ordered Banach space and xy e E.

Then the following assertions are equivalent:

l) x <r.Y;

i|) If z e E* and y e E, then x e E, and x <<1a y in Er;

ny-fnere exists a zs eErsuch thatfor everyz2zxwithy e Erwe havex e E,

and x <1ay in Er.

1.14 PnoposITION. The order relation <<ois an AE-order relation.
proof.The fact that g is indeed an order relation that satisfies the conditions

AEI)-AE{) & AE6) follows Lemma 1.12 and Corollary 1.13. Now suppose that

x * ! <o}y'and let z 2*y. By Corollary l. I 3 it follows that x + y <<u 2y nE", which

impiiejttrat llxll, < lfil, < l. Particulatly, z 2 tr. Then

ll/l =igll/t ll4l >i$t ll"ll,'ll"ll >

>#{ ll"ll, 'll"ll = ll"ll '
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It is possible to introduc,e regularly ordered complex Banach spaces by
complexifcation. See twrzl or [s2] for the particular case of complex Banaclr
lattices. The order relation (ocan be adapted easily to this context.

2. AE.ONDER RELATIONS ASSOCIATED TO VECTOR NORMS

Int Ebe a Banach space. By a vector norm on E we m€n any map g from E
into a Banach latticeXsuch that:

Nl) 9(r) for every x e E; g(x) = 0 if and only if r = 0
N2) g(ax) = cr, g(r) foreverycr € Ilq x e E
N3) 9(x +y) < q(r) + q(y) for every xy e E.
We shall assume in additionthat g is also an isometry i.e.,

llq(x)ll= llxllfor every x e E.

Then we can associate to g the following two order relations on E:

x <<t,q! if and only if q(y) : e(r) + q(y - r)
x <<u,et if and only if g(x - z) < q(z) v dy - z)

foreveryzeE.

For g = ll ll, the norm of d we have <<z,p= <<tand ($2,,p - <<r. For E a Banach
Iattice and g = I l, the modulus on d we havl-<<r, = fu,n='g ifr* studying <<r*
or <<u,qis a way to unify results from Banach lattice the6.y and isometric theory 6i
Banach spaces.

The fact that <<,u * satisfies the condition ABt) above can be argued as follows:
AE4) has a local character i.e., we may restrict ourselves to the case where dim
E < a. Then there exists r e X, x > 0, such that <p(E') c&= {y llyl ( clr for a
suitable ot > 0). We shall consider onX, the norm

llylL=inr{alM<ax}.
Then a classical result dueto Kakutani-Iftein asserts that (x- ll ll) is a Banach

lattice-elgebraic, isometric and lattice isomorphic to a space c(ER) for a suitable
compact Hausdorff space .S. Moreover The inclusion i, : & -r X is a continuous
lattice morhism. So rve are led to the case whereXis a space c(^s,R). [n that case,

x <<"''r"e !'Arui#': 
[ 3b'PI#'19["] 

v eo - 4G)

if and only if x <<, y with respect to every
seminormp,(.) = q(.)(s), s e .S

and the proof of AE4) reduces to the case of Ku.
In what follows we shall be concemed withthe dualityofvectornorms. Since

we cannot give a satisfactory reference for that subject we shall give the details here.
2.1 Definition (L.Y. Kantorovich). A vector norm g : E + X is said to have
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the Riesz decomposition property (abbrwiated, RDP) provided ttr:at for every u e E

and every x1,x2€X*with'<p(t) <xr+x2there 21t7ltyu2e E suchthat u=1tr+u2
and g(zt) <xr, <P(u2) < xr.

' 
if i vecior norm rg has RDP then I isfully valued i.e.,

0 < r < g(z) implies r = 9(v) for a suitable v e E.

Clearly, not every vector norm is fully valued. Any "scalar" nolm, as well as

the modulus of u g*u.h lattice, has RDP. Inboth cases the vector norm is isometric.

Other examples of isometric vector nolms withRDP are indicated below. We shall

need the following technical lemma:

Z.2LEl,tb/lA. Let E be a veator spqce, X an order complete vector lattice,
(I: E -+Xa linear map andP1,P2: E+Xsublinear maps such that u(u'1<P;(u)+

+ pr(u)for every u e E. Then there exist linear maps ur, u2: E -+ X such that u:
= U, + lJ, and U,(u) < P,(u) for every u e E' i e {l'2l''' 

Priof. Consider the sublinear map P : E x E -> X givenby P(u t,ur) = P r(u t) +

+ Pr(u2). LetA = {(u,u)lu e E}. Themap V: L-+XgivenbyV(u,u)= U(u)

satisfiei the inequality V(u,u') < P(u,u) for every (u,u'1 e A. Consequently, the

operatorial version of Hahn-Banach theorem allows us to extend V to a linear

map V : E x E+Xsuch that V(u1,u2) < P(u1,u) for ev.ery (uvuz\ e E x E' The

maps Ur(r) = V(u,O), Uz(u\ = V(0,u) hlve al! reEire! properties' r^ 
2.3' Fxamples. I arnindebted to Dan T. Vuza for the following examples of

isometric vector norms with RDP.

i)Let E be a Banach space and letXbe an order complete vector-lattice.

A linear operator U : E -+ X is called majorizing if Umaps the unit ball 81(4 of
E into an order bounded subset ofX. The set of all majorizing operators from E into

X is a vector space denoted by M(E, X). The map p : M(E, X) + X given b y p(A =
= sup U( Br tE)l it a vector norm having RDP. To see this, let p(U) 3x, * xr. Lemrna

2.2 appliedfor the linear map U and the sublinear maps Pr, Pr E -+ Xgiven by

P,(u)-= llall.x, (i e { 1,2}) yields the linear maps (Jv Uzsuch that U = Ut * U, and

i,1u'1s11u11.r,for every u e E,i e {1,2}' It follows thatu, e M(E,X1and p(r) Sxt

forl e {1,2\.
suppose now ttratxis a Banach lattice and define the norm ll lly'onM(E"'$ by

llqL = ||frf f4l. Endowed with this norm, M(E,X) becomes a Banach space and p

becomes an isometric vector norm.

ii) Let E be a Banach space and let X be a vector lattice. A linear operator

lJ : X -> E is called cone summable if for every r e X* we have

The set of all cone summable operators fromXinto E is a vector space, denoted by

s*6,8).The map x + o(u)r can bcextended by lineariq t9-a3ositive linear form

oiX drnot"d by o(U). Tt ui w" obtain a vector norm o : S*(X,E) -> X-, whereX-

U(',)ll ln 
eIN*, ,,.X*,f;r,= 4.-.)'=*n{l
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denotes the vector lattice of all order bounded linear forms onx.
If ,E is a dual Banach space then o has RDP. This can be shown as follows : Irt F

be a predual of E i.e, a Banach space Fsuch that F, = E. we associate to every
y e s{rn a map u eM(F,x-) given av o (i6) = u(x)(v). The correspondencl
u -+ u establishes a bijection between s*(xy') ndM(F,x)suchthat p( D) = o(t4;
it remains to use the example i) above in order to conclude the proof.

suppose now thatxis a Banach lattice and define the norm ll ll, on .S.(x,E") by
llt4ls = llo(tDll. Endowed with this norm,s*(x,E) becomes a Banach space and o
becomes an isometric vector norm.

iii) Let E be a Banach space and let X be a Banach lattice . We denote by r, the
canonical inclusion ofE into E, i.e.,

ilx)(x')=x'(x), x e E, x, e E.

I.et M,(En be the space of all linear operators u : E -+ x satissing the
following requirements :

a) u(x) ciAD.
b) There exists an .r € x such that u(Er(E)) is contained and totally

bounded in (X,, ll lD.
It is easy to shorv that the supremirm of a totally bounded set of a Banach

lattice with a strong order unit always exists. In fact, via Kakutani-Krein
representation theorem every such a space is arpace c(^tR). consequently, for
ettery U e M.(E n it makes sens e NU)= sup U( 81 (E )) inX. The map p : U + p(U)
is a vector norm on M,(E',x). with respect to the norm ll lly given by
llUlu = lltt(411, M.(El) becomes a Banach space and pr becomes an isometric
vector nonn.

The vector norm p has RDp. Indeed, because every order ideal (x_ ll lD is
algebraic, lattice and isometric isomorphic to a space c(s,R), it suffrces to pro*
the assertion in the case wherexis itself a space c(.tR). In this case, for every
u e M.(E',c(^s,R)) there exists a continuous map F : s + E such that
u(u)(s) = u(F(r)) forwery u e E ands e ^i. The factthat p(q <xr*xzmeans
lfF(s)ff < rr(s) + xr(s) for every s e ,s. consider the continuous maps F,: s -+ E
(t e {1,2})givenby

4{s) = (x,(s) + xls)-t.xds).F(s), ifx,(s) + xr(s) > 0

4(s) = o , if x1(s) + xr(s) = 0.

425

The operators u, e M.qf(s,R)) given by u,(u)(s)= z(4(s)) (i e {1,2}), satisry
all requirements in the definition of Riesz decomposition property.

The Banach spaceM,(El$ is isometric to theM-tensor pioduct.
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The interest for vector norms with RDP is justified by the possibility of dualizing

suchnorms.Indeed,giveninisometricvectornorm<p:E->XwithRDPthedual
vector norm g' '. E' -> X'of I is defined by

e12,[x) =,1]'g lr,(r)l

foreveryu,eE'andreX*;themapg'(z'):X*+IR"ispositivelyhomogeneous
and additive (because of nnbl and thus extends uniquely to a positive linear form

*i aro denoted by g,(z'). It is clear that q is a vector nor,m.

2.4 PRoPosITIoN. <p' is an isometric normwith RDP'

Proof. The fact that g' is isometric is a straightforward calculation'

In fact,

e'(r) ='ffi e'(u'Xx)= s6 
,ip,l,'(')l=

= 
il.jinl"(')l=ll''ll'

To seethat I has RDPle-q(a) < f ,+fr' Equivale'ntly'

u'(u) s/r(q(z)) + r'r(g(n)), u e E'

By applying Lemma 2.2to the'linear form a'and the sublinear forms

, _ J irpti>i ti . ttr,il), we obtain the linear forms r,, zuch that a"(a) < r"{rp(z))-

(fo, ui D *a i . if iff 
'*a 

tl =,'r* z'r. Consequently g'(a') S r', and the proof

is done. I
Proposition 2.4 allows us to consider 9", 9"' and so on' . . ^ ^ ^
2.5.PRoPoSITIoN.Letg:E_>XanisometricvectornormwithRDf'

Then

,,(d,)) = 
*,?)8,, 

l',(u) I

for every u e E and x' e X'*. In other words, q"(l'la)) = r'(q(z))'
" p."t The map z + x'(<p(a)) is a seminorm onE and the set ofall linear forms

majorateailyitis {z'1u'ei\,'gi(r')Sx'};tlusourassertionisaconsequenceof
Hahn - Banach extension theorem'

The duals of the IR - valued nolms are the usual dual norms.

The dual of the vector norm u -> lulon a Banach lattice E is the vector norm

u'-+lu'lonE'.
The dual of M.(E',F) can be isometrically identified with S*(4E')'

Whenif,is identificatiJn it irtf-med, one can shbw, b-V-u-s!1g-ttte techniques

;'i6i,i;,ffittie auat norm of the vector norm lr. on M,(E"F) is the vector

norm o on S*(flE').
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3. BANACH SPACES HAVING AN ORDER CONTINUOUS NORM

Throughout this section E will denote a Banach space endowed with a^ AE-
order relation <.

3.1 Defnition. we shall say that the norm of E is (< - ) order continuous
providedthat every downwards directed net (r)o ofelements ofEis norm convergent.

Ifthe norm ofEis order continuous, then every upwards directed < - majorized
net of elements ofE is also norm convergent. ln fact, if (x)o is such a net and x, <y
for every a then the net (1t-x)ois < - decresing. The argumant is as follows : xa < xb ( y
implies y - xa << I and x6 - xo K xb ( .y and thus by condition AE4) we conclude that y
- \ < (! - ra) + (xr- xo) = ! - xo.

Alsq in Definition 3.1 above it suffices to deal with sequences inst€ad ofnets.
For u,v e E with u << v, we define the (< - ) order interval of extremities z and

v as the set

fu,vl ={r I r e E, u <<r ( v}.

In order to underline the order relation under study we shall use also notation
like [u,vJ,., fu,v'L (when ( = ((r) and so on. particul atly, if E is a Banach lattice we
must distinguish carefully among the intervals [z,v]o and the usual order intervals,
denoted by fu,vl.

3.2 LELfl\dA . If u r< v then fu,vl = {r I x e E, x - u << v - u} .

Proof.Infact, if u <<x << vthenx -u <<x < vand v-r ( v, so byAE4) we infer
thatx - u <<(v - x) + (x - u)= v - u. Conversely, fromr - u << v - z << vand u <<u << v
we infer that x - u + u << v - u + u i.e.,x << v. Also, from x - u << x- z << yand il ( v we
inferthat u << u + (x - u) = x << y t v - u= y. I

If E is a Banach latticg then from Lemmata l.l0 and 3.2 above we infer that

fu,vl"=funv,uvvl
and thus f-u,ulo: f-u,ulfor u> 0.

3.3 PnoposrrloN. Every << - order interval fu,vl is convex, bounded and
norm closed.

Proof. Let xg e fu,vl and a e [0,1]. Then by AE2), q.u << x << cty and
(l - o)u < (l - cr)y < (l - c)vwhich yields, via AE4), that u( ox + (l - cr)y < v. By
Proposition 1.2 iii) above, u,v e E na(0) and thus [z,v] is a bounded set. The fact
thatfu,vf is norm closed follows from Lemma3.2 andAE6). f

3.4 conol-I-qRy . If E has << - order continuous norm and (x)ois a << - downwards
dirccted net of elements of E then (x)"is nonn convetgent to its ( - g.l.b.

Proof. suppose that llr" - rll + 0. since all intervals [0, xo] are norn closed, it
follows that r << xo for every a. The same argument shows that ify < ro for every a
theny << r. I

427ll
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For E aBanach lafiice and << = <, , Definition 3.1 above agrees rvith the usual

"onr.pt 
of order continuity(called here (a) - continuity) as known in Banach lattice

theory

0 3 xoJ in f implies (x)o is norm convergent'

See [LTz], p3, or [SJ, p.92. Most of the results in this section are inspired by this

particular case.- 
[t rvas noticed in [AE], p.107, that the norm of every Banach space is I -

continuous. We shall prove here a more general result'

3.5 PROPOSITION. Let X be a Banach lattice with (o) ' continuous norm and

let <p : E -+ X an isometric vector norm. Then the norm of E t,t (r,g '-continuous.

Proof. Suppose that (r)o is a < - downwards directed net of elements of E.

Then (g(x,)), is ; downwards directed net of positive elements ofXand thus norm

convergent. Sincefor c)a,b wehave

g(xo - rb) 3 gfto - r") * g(xa - r") =
= e(xo) + q(xa) - 2q(xJ

it follows that (x)o is a cauchy sequence in the Banach space E. I
Another criterion of order continuity is as follows:

3.6 PnoposITION. Suppose that all order intervals fu,v) of E are weakly

compact. Then the norm of E is order continuous'

As in the case of Banach lattices,'this is an immediate consequence of
3.7 DnU'SLptvlrla . Suppose that (x)ois a downwatds directed net of elements

of E,weakly convergent to x' Then llr" - xll + 0'" ' 
nroof.Notice firstthatx (ra for all cr. In fact, allthe order intervals [0, rJ are

convex *d t orrn closed, which implies thatthey are also weakly closed' Since (xJ"

is downwards directed it follows that r e [0, xJ for every o'
The net (xo - x)o is also downwards directed. [n fact, if xo < xp then rp -.ro << rB

and ro - t ( ra (t rp: so by AEa) we infer that ro' r < (xo - x) + (xp - rJ = x9' x'

Sincexo-r * > 0, foreverye +0thereexists aconvexcombination

E^-(*u' -4
of nonn ( e. A new appeal to AE4) shows that for ct 2 a(l), . .' ,q(N) sufficiently largg

xn-x=*^-('" -4 ,. E^-hu, 
-4

and thus llr" - xll ( e, by Proposition l'2 jii)' r
--- -Bt"i;oposition :.e, ihr norm qf every reflexive Banach space is order

continuous regardless of A4-order relation we consider on it.

A result due independently to H.P. Lotz tl,l anq Niculescu-fi'il] asserts that

the converse of Proposition 3.6 is valid for E a Banach lattice and << = <<o. Horvever
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this is not longer true in the ge^neral setthg e.g., consider the case where E = o, K= lty
and x is the unit of ,.

We come now to the main source of Banach spaces with order continuous
norm. our construction exploits the fact that every von Neumann algebra has a
unique (up to isometry) predual and its real part is an ordered Banach space with a
strong order unit. See [SZ].

Given l topglogy t on a Banach spaced we shall denote by to the t - operator
topology on L(E,E) i.e.,

To 1 Zif and only if lno(r) -+ T(x) for everyx.

3.8 Lgm,n. Let,.{be a commutative von Neumann algebra included by
L(E,E), such that the inclusion ,{ + L(E,E) is a morphism ofunital normed algebras
mapping w' - convergent nets into to - convergent nets, where r = c(E, 9) is the
weak topologt associated to a certain separating subset 2f,of 8,.

Then

x <ky ifand only fx = Uy for a suitable U e,/, 0 < U < i
is an AE-order relafion on E satisfiing the following two conditions:

1) Every <<s- downwards directed net (x)oof elements of E is t - convergent
to its g.l.b.

i|) AU <<*- order interyals fu,v) are r - closed.
Proof.We shallput [0/J = {UlU e,-{,0<U<D.Bec,ause,/is spaceZ.(p),

it satisfies the following Radon-Nikodym type property
('r) ForeveryS, T e {thereexists aU e flJlsuchthatS= U(S+ Z).
It is immediate that <<7 is a reflexive transitive relation on E satisfying the

conditions AEI)-AE3) and AE5) in Definition l.l.
For the antisimmetry of (17 suppose that r <<.4 y arLd y <<d x. Then there are

S,T,U e [0,4 suchthat

x = dt, y = Txand /-.S + U(/-,SZ).

The existence of Uis guaranteed by (*). We havey - x= (I -S)y = U(I - S +.{/- 7))y
=U(0)=0i.e.,x=y.

For AE4), suppose that x, <\.d!v xz <<&!zand y1 <12!t* lz i.e.,rr = Sr/r,
xr= S2y2,h=T(h+ yr)for suitableSr, Sz, T e [0,1. Thenx, = S1T(Str+yr),
xr= S,r(I - 7)(h+ yr) and 0 <^S,f +,Sr(1- n<{ which implies xrllxzandx, +
+ xz <<alt I ),2.

For AE6), letxo <sy @ e A) with llx" - xll -+ 0. Then for each a there exists
a Uo e [0,I] such that ro = Uoy.Since the unit ball of ,,4 is w' - compact: we may
assume in addition that (U)" is w'- convergent to a IJ € [0,4. Then
x'(UJ) -+x'(Uy) foreveryx' e ffandthusr= Uy. This endstheproofthat<17is an
AE-order relation on E.

Let (rjo c fu,vf a net r - convergent to x. Since xo=(Jov for suitable
Uo e f},Il and the unit ball of ,/ is w' - compact, we may assume in addition
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that (U")" is w' - convergent to a U € [0,4. Then r = Uv andthus x (17 v. For the

inequality n Ks x, notice that ro - u <<4 v and repeat the argument above.

Finally let (x)o be a downwards directed net of elements of E such that xo<1sv
for wery o. We can show as above that r is a t - cluster point of (r)o. Since (tJo is
downwards directed and the order intervals ofE are t - closed, it follows that x is the

g.l.b. of (rJo and thus the only t - cluster point of (x)o. r
From Lemmata3.T and 3.8 we infer thatthe norm of E is <s- order continuous

provided that r is the weak topology on E.

4. TACIAL CONES

The facial structure (of the unit ball) of a Banach space E will be expressed in

terms of cones. By a cone we shall mean any non-empty subset C of E such that

g = l)aC . A cone C ofE is said to be proper (respectively hereditary with respect

to 
"n"#-o.d., 

relation ( on E) provided that C ^ ({) = {0} (respectively r < y and

y e C implies r e Q. A cone C is said to be convex provided that C + C c C.

A convex cone C ofE is said to be (<) facial provided that the following tn'o
conditions are satisfied:

FCI) C is hereditary;
FC2\ x lly for everyr andy in C;
By F 2) and anti-symmetry of <<, every facial cone is proper.

For everyx e E, the convex cone

C(r) = Oly e E,y << ax for a suitable o > 0)

is the smallest facial cone containing x i.e., the facial cone generated by x.

It is easily seen that a convex cone C of E is facial if and only if C = [J C(x)

and x,, x, e C implies C(x,) + C(x) c C(x, + x). x2c

A facial cone may not be closed e.g., see the case where E = L2f0,I1, ( = (o and

C = C(l);in this case C = E*.
The facial picture of a Banach space is clarified by the following results.

4.1 Lprvnvre .If Cl and C2arefacial cones such that C, c Crand Cr* Crthen
C, cFr C2.

Proof. Supposethatthecontraryistrue. Thenwouldexistan x e C2and anr> 0
such that 8,(x) OC z c. C 1. lf z e C2 \ C v lbll< r then x + z e B,(x) lC2 c Cr. Since

x, z e C2, we have z << z 4 x. Since Ct is hereditary, the later inequality implies that
z e Cp a contradiction. I

4.2 Conolunv. Let C be a facial cone and x e C \ Fr C. Then C = C(x).

An equivalent way to describe the facial picture of a Banach space is
indicated below.
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4.3 Defnition.By a.facial structure on a Banach space E we shall mean any
family (C"L . E of proper convex cones ofd satisfying the following conditions:

i) x e C" and crC" = C* for everyr e Eand cr, e IK;
ii) Ify, z e C,then C, * C,cCy*ri
iii)y e C,implies Crc.C,;
iv) For every x € E the set [0,x] = {y I y, t - y e C*} is conyex, closed and

contained in the ball B yay2@/2).

The facial structuie associated to anAE-order relation < is (C(x))". 
". 

Every
facial structure on .E can be obtained in such a way. In fac! if (C')' .6,is a facial
structure on E then by letting

r <y if and only ifx, y - x e C,

we obtain anAE-order relation < on E suchthatCu= {r lx n ey for a suitable a > 0}
for everyy e E. Consequently the AE-order relaions and thefacial structures on a
given Banach space are in a natural one-to-one correspondence.

By Lemma 4.1, every facial structure gives rise to a certain partition of the
whole space into simmetrical cones.

The facial cones allow us to develop an ideal theory that is in many respects
comparable withthatin Banachlatticetheory. For, weneedanobservation, important
for itself.

To any convex proper cone C ofvector space.E we can associate an ordering
on d compatible with the linear structure:

x Sy (mod Q if and only ify - x e C.

4.4 Lmnae . If E is endowed with an AE-order relation << and x and y are two
elements of E then the following assertions are equivalent:

1), < y;
ii) 0 (x <y (mod Q"for a suitablefacial cone C containingy;
iii) 0 ( x <y (mod Q,for everyfacial cone C containingy
Proof. i) + iii). If x <y and C is a facial cone containingythen x, y-x e C

because C is hereditary. Clearly, iii) =+ ii).
ii) * i). By hypotheses, r and y - x arein C. By FC2), x ll y-x and thus

x <<y=)c+(y -r).f
The principal ideal generated by

4 = Spa.r C(r). The realpartof E*,

Re E' = C(x) - C(x)

will be endowed with the ordering associated to C(x) and the norm

l[yll, = inf {o I cr, e IR*, ) u << ax, v << ctx, y = u - v).

The fact that llyll, = 0 impliesy = 0 can be proved as follows. Letu,, vn e C(x)
withy= ur- vrandun, vn<xln foreveryn e IN' . Byproposition 1.2 iii), llu,ll, llv,ll
<llxll/n, so by letting n -> @ we conclude thaty: g.

an element x of E is defined as the set
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4.5 Lnrue . For y e Erand a20 thefollowing assertions are equivalent:

i) Y = u - v, where u, v << dx;
ii) -cx <Y<dx (mod C(x));

iii)y + ax <<Zsx.

fii"1 Clearly i) =+ iii) and ii) <+ iii). As concerns the implication iii) =+ i),

notice thai y + ot ri zo*yields cx - y << 2ucand thus y = (y + ox)12' (ux' y)/2. 1
From Lemna 4.5 and AE5) we inferthat

Er= t! ly + qr << Zsx for a suitable a > 0)

and the canonical inclusion r' : Re E, + E is continuous with lll"ll < lfll
4.6 LpIrrue. Re E, is an ordered Banach space with a strong order unit, x.

proof. we have to prove only the completeness o{ Re- 4 lot, let $tn)nbe a

Cauchy sequ*.. in Re E, . Since I, is continuous, (yr), is also a-Cauchy sequence

ir i *a tn"s there exists ay e E such that lp.,'yll + 0. On the other hand, for each

e > 0 there exists anN e IN such that

lly^ - yrll,< e for every m, n > N i.e.

..ex 3 !^ - ln 3 u (mod C(x) for every m, n 2N

by Lemma 4.5 above. By letting m -+ @we infer that

-Ex<Y -!,3u (mod C(x)) for every n> N

which yietdsy e E, and ll4'y"l!< e for n2 N' 1-- 
fnr fofowin! propositioiicombines classical results due to Kadison Kakutani

and Krein.
4.7 PRoposITION. i) Re 4 is algebraic isometric and order isomorphic to

the ordered Banach spaci A(IK,R), whire K denotes the w' - compact convex set of
all states ofRe E".

il) Suppose in addition that
li eiiier Re E" is endowed with a bilinear multiplication for which x is an

identity and y,z e Re Eo ! 2 0, z) 0 implies yz20; ort
, i1 R" E*it o vector lattice with respect to the ordering mod C(r)'

ThenR6, Erts a commutafive Banaih algebry algebraic,isometic and order

isometric to the'banach lattice C(,S,R), where S denotes thew'- compact set of all
nure states ofRe 8..'- - 

irooy."For i),*see [Kad2]; ii l) follows from Theorem 1.11, while ii 2) leeds

tlre classic"al representation theorem of AM-spaces due to Kakutani and Krein. See

[fl for details.

5. FACES AND EXTREME POINTS

The facial cones can be als! defined as the cones generated by faces. Suppose that E

is a Banach space, K = Er(O) is the unit ball of E and S is the unit spere of 'E'

l6
432
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5 .l Def nition. A (<<-) face of K is any subset F of ,s satisfying the foflowing
three conditions:

Fl) r lly for every xy e F;
F2)Fis absorbanti.e.,y e K\ {0},x e Fandycrimplies y /llyll e F;

F3) xy e Fand cr e (0,1) implies #fl$...
The connection with the usual notidh of Ace i("Jj.pfain.A below
5.2 Lptvnaa. For F a subset of K the following assertions are equivarent:
i) Fis a properface in the classical sense i.e.,Fis a convex subset of s such

that xy e F, ae (0,1) and ax+ (1 -cr,)y e F implies xy e F.
ii) Fr's a <<y-face.

Proof. i) =+ ii). suppose that r and y are two points of F. since F is convex,
x/2+ y/2 e F. Then

'=ll#ll=*ptt.*tt,lt
which implies thatx lly. For F2), la y e K\ {0} and x e Fwithy <g r. Then
I = llrll= llyll + llx -ylland

'=ll/1 ffi*ll'-dffi
which implies tlnty I llyll e F. The condition F3) is clear.

ii) + i). we shall show first that Fis convex. For let xy e F c ^i and let
cr e (0,1). Since x lly, bV Proposition l.2 iv) above we infer that llcx + (l - o)yll =
= llcxll + ll(l - or,)yll = 1 and the desired conclusion follows now from F3).

lf xy e K, a e (0,1) and ax + (l - a)y eFthen I = llqr + (l - o)yll : llaxll +
+ll(l -a)yll< l, rvhichyields llrll=lMl= I andc,r, (l -c)y <<ycrx* (l -o)y e F.It
remains to apply F2) in order to conclude that x andy are in F. I

There exists a natural one-to-one correspondence between the (closed) facial
cones and the (closed) faces.In fact" if C is a (closed) facial cone of E md C * 0
then F= c 0 s is a (closed) face and c = @ne F,the cone generated by F. The'empty
set is the face corresponding to the cone {0}. Conversely, if Fis a (closed) non-
ernpty face of K, then C = cone Fis a (closed) facial cone such that F = C0^!
and c t {0} . In fact, suppose that Fis closed and let (rJ, be a sequence of elements
ofCsuchthatllr,-rll+0.Ifr*0thenllr,ll-+llrllandxlllv,ll+r/llrll.SinceFis
closed, x/llrll e Fand thus x e C.

By Zom's kmma, every face is contained in a maximal face. we do not know
whether tlre closure of a face is still a face. This is true for usual faces, so in this case
madmal faces are closed.
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The following exalnple shows that Fl) and F2) above do not yield F3). For,

consider the Banach space E = /'(2,1R), endowed with the AE-ordet relation <E.

Thevertices u = (-l,l) andr=(l,l) oftheunitballKofEbelongtothe same <9 -

face of K. Consequently the set F= {a,v} satisfies the conditions Fl) & F2). Since

(+".+l4l+".+lle F,Fdoes not satisnes F3)

The case where E = {-(2,1R), ( = (o and F= E.. n S shown that a << - face is

not necessarily convex.

In operator algebra theory it is known the notion of a face of a C* -

algebra. A face of the C' - algebra ,d is any convex cone C contained n &*
such that

y,4*, x e C andy< x implies y e C.

In our terminology, the faces of ,/ are precisely the oo - facial cones of Re ,-{*,

contained in4.
Every point x of the unit spere of a Banach space E belongs to a

certain face. In fact, face {t} = C(x)flS is a face, precisely the smallest

face containing r.
5.3 Defnition. A norm I elemgnt x of E will be called (< -) extremal for K

provided that C(r) = IR*'x i.e., frce{x} = {r}.
Since K is the only subset of E whose extreme points are investigated

we shall denote by Ex E (or Exn E) the subset of all extreme points of K.

Also, in order to avoid zub-scripts, we shall use notation like Exy E rvhen <
: (y AtC.

Notice that if Fis a < - hereditary closed subspace of E then

Ex*fts (Ex.E)flF.

For << : <<s we retrieve the classical notion of an extreme point. See Lemma 5.2

above.

5.4 L,prrnfe . Let H be a Hilbert space and,.{ the von Neumann subalgebra of
L(Hn generated by a self-adjoint opts7n1sv tr e LQUU.ThenExaH consists of
all normolized eigenvectors ofA.

Proof.Let v e Ex4 //. Because 0 < A-, A* <llAll'I and A', A* e ,-{, it
follows that A'v , A*v ( llr{ll'v and thus ,4v = A+v - A-v = ov for a
suitable oc elR.

Conversely, letAv= av with llvll = I and cr e IR. ThenJ(A)v=fla)'v
for every f eC(o(A),A) i.e., v is an eigenvector for every operator in the

C' - algebr a C' {A,I'1, generated by / and 1. Since ,-{ is the wo - closure of

l8
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c' {A,I}, then the same is true for every operator in ,.{. consequently, x <<dv
implies x=?'v forasuitable l" e (Di.e., v eExaH.l

The notion of an extreme point is very closed to that of discrete element.
5 .5 Def nition. By a (< -) discrete element of E we shall mean any element x

of E such that u,v < x and c(u)fi c(v) = {0} implies either a or y is 0.
Clearly, every element of Ex E is discrete. Conversely, every normalized discrete

element is also an extreme point. Before indicating the details, rve shall irotice the
particular case of Banach lattices:

5.6 PRoposITroN. Let E be a Banach lattice.
i) An element x ofE is <<o- discrete ifand onry if it is an atom i.e., u,v <lxland

u Av = 0 implies either u or v is 0.
ii) Ex, E coincides with the set of all normalized atoms of E.
Consequently, in the real case,

Exyo6= A Exoos = {t {6r,},lz e IN)
Ex, C[0,1] = {tl} Ex"C[Q,t]= @

ExLL2[0,t]= {r lllrll= l} ExoL2fl,tl= g
We shall prove that in general every nonnalized discrete element is an extrfiie

point. Our argument is essentially finite dimensional and depeirds upon an analogue
of the orthogonal decomposition.

5.7 LsNfl\,IA. Let E be a fnite dimensional Banach space endowed with an
AE-order relation << and let x e E, x * 0.

Then the cone c(x) is closed andfor every e e E therc ertst elements u and v
in [0,e] such that e = u + v, u e C(x) andc(v)f-l C(r) = {0}.

Proof. we shall show first that the cone c(x) is closed. For, let (yn)nbe a
sequence of elements of c(x) such that lly, - yll+ 0 in E. Theny, <11y,ll.x iii every
n. since dim E < co, the canonical inclusion i*: E" + E is an isomorphism into and
tlrusy e E and lly,-yl!+ 0. PutM= sup lr%lh. ByAE3) andAE6) above, we infer
thaty <<Mxi.e.,y e C(x).

As concerns the decomposition part, consider the set
A"= {z I z e C(x), z << e};0 e A" and A"is inductively ordered by <. In fact, the
order interval [0,e] is compact and thus every increasing net of elements of [Oy' is
norm convergent to -its Lu.b. By zomls lemm4,4, must contain at least me maximal
elenrertsayz.Itrernainstoprovethatv=e-zsdisfisc(v)Oc(r)= {0}.Infact, ifthe
contrary is true then would exist a z e C(x)such that z * 0 and z << v. Since z <<

e - u, u < z and e -ullu,by AE4) it follows thatz * u <<e and u <<z * z. since
c(x) is convex, z + u e c(x) and this fact contradicts the maxiinality of u.
Consequently C(v)f^lC(r) = {0}. r

r9
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5.8 LeIvI\4A, . Let E be a fnite dimensional Banach space endowed with an

AE-order relation <<. Then Ex E consists precisely of all normalized discrete

elements of E.
proif. Suppose that e is a normalized discrete element of E and e e Ex E.

Then there exists an x e Esuch thatx << e and x 4 R*'e.Put cr : sup {1, l}'e < -r}.

Then;r - s.e* 0 and C(x - c[e) n IIt.'e = {0}' In fact, if W'< l'('r - ce) with

p,l, e IRl, then (p + l,cl)e << x,r i.e., (/I + a)e << x, in contradiction with the

definition of c(. By Lemma 5.7, e admits a decomposition

g=11 *V

with u e C(x- cre) and C(v) fl C(x - oc)= {0}. We shall prove thatboth n and v

are different to 0, which will conhadict the fact that e is discrete.

If v: 0, then e : u e C(x - o.e)- Or, C(x' o,e) 0 IR*'e = {0}'
lf u=O,thene= vandthus c(e) (^l c(x -cre): {0}.or, x'cle<<x<< e, so that

C(x - o,e\ cC(e).' 
Conseqrently, eis an extreme point of E. The other implication is clear. I
5.9 THE9REM . Let E be a Banach space endowed with an AE-order relation

<<. Then Ex E consists precisely of all normalized discrete elements of E.

proof.We have only to prove that every normalized discrete elements e of E

is also an extreme Point i.e.,

C(")= R*'e.

For, notice that < induces on every finite dimensional subspace F of E anAE-ordet

relation <ggiven bY

x <<r ! if and only if .r and y belong to F and x << y in E'

By Lemma 5.8, C(e) fl F = \.e for every Iinite dimensional subspace F
which contains e and thtts C(e) is indeed IR.',. r

It is worthwhile to mention that every extremal point x belonging to a facial

cone C generates an extremal ray IR.'.r of C i.e.,

x: cLu+ (l - o)v with z,v e C and a e (0,1) implies z,v e \'r'
As shows the following example, not every extremal ray of C is generated by

an extreme point. In fact, let E : Lzl},ll,( = ( rild C : C(l)' Ex rE = O because

E has no atoms. However every characteristic function Xo e E gives rise to an

extremal ray of c. The same example shows that Krein-Milman Theorem may be

not valid for < * <9'

We shall prole in sertion l0 an analogue of Hilbert-Schmidt Theorem that

brings together several types of finite dimensional decompositions including the

orttr-ogor;l and the latiice ones. The basic ingredient is the case of finite

dimensional spaces.

5.10 T'HEOREM . Suppose that dim4 = n and E is endowed with an AE-order

relation <<. Thenfor *ii " e E there exist scalars crr,...,@n € [0, lpll] and << -
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extTeme pointE ep...,e^e C(x) such that

x : cltet I ... * enen .

Proof. The assertion is clear forx an extreme point.
Suppose ttnt x e Ex E, llxll = l. We shall prove fint that there exist discrete

elements/such trntf << x andf *0. In fac! by Lemma 5.g above, there exist
elemenb u,vel0ll \ {0} suchttrat c(u) | c(v) = {0}. Bylemma 4.t, c(u)cFr c(x)
and thus dim c(z) . di- c(x) < n. consequently, in at most z steps rve are led to
adiscrete elemcnt{ TthI < x.a1df-7 0. Put e, =J; / lnnand cr, = zup {1, l}ue, < x} .

Thene, e ExEandC(x-cr,e,) O C("r)=C(x-ct,e,) n IR*.e,'= {0}.If.r-i,", is
not discrete the process described above should b6 iontinued ivith r - ct,e, initdad
ofx. r

For << = <r, Theorem 5.10 above shows that every x in the unit sphere of E is
a convex combination of extreme points. In fact, if

x: g,rer * ,,. * enen

wither,...,eoe C(.r) and cr,,...,{) 0, then, by FC2),

I : llrll=;lor,,e,ll+ ... + llc,.,e,ll=

=cr*...*en
Since e e Ex E ff C(x) if and only if -e e Ex E O CGr), Theorem 5.10

includes the classical result due to Caratheodory that states that each point in
the unit ball of an n -dimensional Banach space is a convex combinati-on of at
most-n*1-extreme points. In turn, Theorem 5.10 is an €asy consequence of
Caratheodoryb result.

Theorem 5.10 includes also the following result due to yudin: Everylinite
dimensional Banach lattice has a basisformed by atonts (and thus it is a[e6raic,
topologic and lattice isomorphic to a space IR').

From Theorem 5.10 we can deduce easily the fact that given an n x n -
dimensional self-adjoint mafiixl there exists anorthonormal basis of (D, formed
by eigenvectors ofl.

Theorem 5.10 extends to all Banach lattices whose order intervals are com-
pact, asserting the fact that theyare discrete. See [Wh]. An open problem in this
setting is outlined at the end of this paper.

6. THE DECOMPOSITION DETERMINED BY A CONE

As usually, E will denote a B anach space endowed with an AE -order relation
(, K its unit ball and ,S the unit sphere of E.

The complementary cone of a cone C ofE is defined as the set

Ct= {x lC(x) fl C= {0}} =

= {x I y << x and ye C implies y = 0}.
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Notations like C1," , Ct'" etc, are intended to underline the order relation under

study <<, <<uetc.

Cen6rally Cr is a hereditary cone but CI need not be convex orproper even

if C has these properties. For example, if E is the Euclidian 2- dimensional space

and A = {(a,a) la e IR.} then

6'r-L = IR2 \ {(o,o) ler e IRI }.

6.1 THEOREM. Suppose that E admits weaker locally convex Hausdorff
topologt t such that every << - upwards directed << - maiorized net (x.),in E has a

r - convergent subnel.
LetZ be a r - closed convex cone of E. Then every x e E admits a

decomposition
y=11 *V

where u e C, u << x and v e Cr.
Proof.LetA: {yly e C,y t< x\. Then 0 e C and A is inductively ordered. By

zorn,s lemma, I contains at least one maximal element, say z. The u e c, u << x and

we shall show that v = x - u e C !. In fact, if the conbary is true, then wotrld exist a

ze C,z * 0, such thatz << v. Since z <<x-tt,tt<<1t andx - ullu,by AE4) above it
follows thatu<<z*uandz* u <<.r. Since Cis convex,z* u e Cand this fact

conbadicts the maximality of u. Consequently v e Cr. I
The hlpotheses of Theorem $.1 are fi,rlfilled in each of the following two

particular cases:- 
A) E has order continuous norm and t is the norm topology;
B) E is the dual of the Banach space F (endowed with an isometric vector

norm g : F -+Xhaving RDP), 1( : 1(u.", and t' = w'.
'ih" a.gu*tnt in case B) consti'tiites Corollary 6.3 below.

6.2 LCr*lVe . Let g i E -+ X be an isometric vector norm with kDP. Then

every <<M.o, - interval lu', v'f of E' is w' - compact.
Proof. BY ABt),

fu', v'f= 10, v'l 0 (u'+ [0, v']),

so that.it suffices to prove that every order interval [0, v'] is w'- compact. For,

notice tlrat [0, v'] is the intenection of allballs Er(u): {z'lz'e E,q'(z' - u')<x'\
with z' e E' and.r' e X'*, that contains 0 and v'. Qr, any ball E r(u') is a w' - closed

subset of aw' -compactset, {z'lz'e E',,11"''u' ll<ll/ll}'
6.3 Conoll ArtY. Let E and g be as above. Then every <<Me, - upwards di-

recled <<u,^,-majorized net(u')*of elements of E' is w' - convergent to its (,rre,-8.1.b.

Apfrlications of Corollary 6.3 to the study of Boolean algebras ofprojections

will be given in section 9.

The following example outlines the significance of Theorem 6.1 in the case

of Banach lattices. Suppose that E is a Banach lattice and ,-/is a closed lattice ideal

ofEi.e., aclosed subspace ofE suchthat lxl< lylandye ,/implies xe,9.Then
the <<"- complementary cone of ,fis also a closed lattice ideal of E and coincides
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with the order orthogonal of 9,
gt= {xlxe E,lrln lyl:0 for every ye g }.

By Theorem 6.1,. if E_ has (9) - continuous norm then g gives rise to an
orthogonal- decomposition E = ,9 @ gt known in Banach lattice-theory as band
decomposition See [LT2] or [S2].

In what follows we shall be concerned with the geometric consequences
ofTheorem 6.1.

Let F be a subset of K. The cqmFlementary set F" of F is defined as the
union of all ( < - ) faces G contained in (eone F1r.-

6.4 PRoposITIoN. suppose that the norm E is << - continuous and let F be a
clos ed face of K. Thery for every x e K there exist scalars l, p e fI,lj and vectors
u e F and v e F" such that x: ?vu * Fv.

Proof. The cone c generated by F is convex and closed, so by Theorem 6. I
thereexistpe cand qe c suchthatx:p+q.sincep,q<xand ie Kitfollows
that llp ll, llq ll < l. If p or q is 0, the proof ends. Ifp + 0, and q * 0, then

"=llrll ffi.llellffi
andu=p /llplle F. Since C(q) O C: {0} face {q /llqlll fi F= Oandthus
q / llq lle F". r

The case where E: l.(2, R), (c= (^ and ^F = face E, n S shows that the
result of Proposition 6.4 is the best possiblE in the sense ttrat'ttre scalars l, arrd p
T1y b9 aftihary in [0,1]. on the other hand, in the case where (( : (1, proposition
I .6.4 shows that every x e .s is a convex combination of a point of Find a point of
F". This was first noticed in [AE], p.108.

7. TIIE CENTRALIZER

In this section will shall attach to each Banach space E endowed with an AE-
order relation << a certain C' - algebra of operators on i called the cenhalizer. The
importance of this construction will become cleai in the next sections-by
considering the reversed process.

The idea is to associate to << an orderrerati ononL(E,E)by letting,s< rifand
only if Sx << ?nx for every x e E.

This new order relation satisfies all the conditions in Definition l.l above
when L(E,E) is endowed with the family of all seminorms p : r -+ ll rxll, x e E.

Consider the facial cone generatedby I,

Z(E).= {TlTe L(E,E),7<<aI forasuitableor,> 0}.
The cenhalizer associated to << is defined as the principal ideal generated by {

Z(F): Span Z(E).
Notiations like Z.(4, ZL(E). etc, are intended to underline that the order relation
under consideration is << respectively <<retc.
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By Lemma 4.5,

Z(D= {TlTe L(E,E),7* aI << plforsomeo, B > 0}.

Since the results in section 4 remain frue (with a similar proof) for locally

convex spaces, we inferthat PteZ(E) is an ordered Banach space withrespect to the

"one 
ZlS,and the norm ll llrassociated to the strong orderunit /. It is also clear that

S,T e Z(Q,implies ST e Z(E),

7.1 P1OpoSITION. Re Z(E) is a commutative Banach algebra algebraic,

isometric and lattice isometric to a space C(O']R).
In the complex case, z(Q is the complexification of the Re z(E) and thus- it

is a cornplex Banach lattice and also a complex Banach algebra with respect to the

modulus

I 
s +ir | =dyg"l (cose). s +(sine)' r 

I

and the norm

ll,t+irl[= ll ls+irl llr

where S,T e Re Z@.
Z.Z fneonei't .i) Z(E) is a commutative Banach algebra and a Banach lat-

tice that is algebraic, isometric and lattice isometric to a space C({l,C).
ii) Theiormllll,and the operatorial norm coincide on Z(E).

Proof. The asseition i) follows from Proposition 7.1.-

ii) Bi'i), it suffices to prove tlnt ll ll and ll ll, coincide on_Re z(E). Fot,let
Ie Ra Z@'ind suppose that o = llf l[ = inf {I I I. 8., ! : Xn r\e1!or
each e e @,i1 there-exists a Ue Re ZQi) such that 0 < U < I, U + 0 and TU 2

> (o - e)U! b i..., 1o - €)U( IU. Since U*0, there exists anr€ E such that

y) Ux * 0. Then (o - r)y < ry, so by Proposition !..?iii) llryll > (" - 
")llZll:'consequently, 

ll rll 2 ct - e. The fact that a = llrllr< ll I ll follows from Lemma 4.5

and AE5). I
By Proposition 7.1 above, all operators I in Re Z(E) arc self-adjoint. In fact,

lle''ll: I foreveryte IR'
The operators inZ(E).are diagonal in the sense thatthey leave invariant

every hereditary cone of E. Consequently, for every A e Z@*, x << y implies

that Ax << Ay.
If ris an artitrary operator inz(Q then I(E) c E, for every x so that every

v e Ex E is an eigenvector for ?" This connection between spechal theory and

geometry will be used in section 10 to prove Hilbert-Schmidt type theorems for

operaton acting on Banach spaces. It is clear that when Z(E')\{0} contains no com-

pact operator then Ex E must be the empty set.' 
i.g pnoposrrroN . Z(E) is a full subalgebra of L(E,Q i.e., rf Tr exists in

L(E,E), then T't e Z(E).-' ' prool.Let T e Z(Q such that I't exists in L(E,D: We shall prove that there

exists a constant o > 0 such that I rl 2 a/. If this is not the case then for all n e IN'
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we have (I - nlTl). > 0 and thirs there exist rz, e E andl, t O such that

v,= (I - nlTD. un* 0; vn<< ?vou, .

Sinee T e Z(E),

(I - nlf ) v,= (I - nlTl). v^

which yields

vn= nlTl v,+ (I - nlTl)t v, .

Particularly, nlT I v,11 v, for all n. Then

llv,ll : llTaTv^ll < llr-,ll.ll Tv^ll szilr"il.lllTl v^ll<pall eln).llv,ll
which yields llr-tll > n/2 for every n € IN', a contradiction. we used the fact

7.4 PnoposrrloN. For each x e E the map T -+ Tx is a lattice morphismfrom
Z(Q_into E.

In fact, it suffices to prove that for every ^s,l"e z(E). we have
sup{^S,[x = sup{Sr,Lr} which follows the lemma below:

7.5 Lpvrrra . Let s,T e Re z(E) and xy e E such that sx << y and rx << y. Then
sup{,S,2}.r <y.

_Proof. we shall identi& 
^s 

and r with their images in c(e, IR). see proposi_
tion 7.1 above. Fore > 0 given, considerthe sets

O, : {ro lo e O, S(o) > I(o) and %: {r lor e e, I(ar) > S(o) + e}.
Then there exists a u e z(E)such tbat o < u < L (Ja = Lforo e c), and uor = 0 for
o e Q. Then

sup{,S,O + eI > US + (I _ U)T >sup{^S,Z} _ e/
i.e., U,S + (I - (rT - sup{.S,4 + e/( 2eI. Then

USx + (I - {)Tx - sup{,S,flx * esc <<2e.x

so by AEs) and the fact that e > 0 is arbitrarily small we obtain that

7.6 PnopostttoN. 
^Szppos e that thqe qists a weaker loully contat Hausdor/f

topologt r on E such that:
i) every << - downwards directed net of elements of E contains a r - conver-

gent subnet.
ii) every << - interval [u,v] is r - closed.
Then Z(E) is order complete.

.) - Plogf.By Pro-position 7.1 it suffices to consider downwards directed nets(r)".of elem?"t" 2l z\E).. Thql for^eachx e E the limit Tx = r - ti- T"iiiirtr;
E. It is clear that inis the ( - g.l.b. of (Q).. r

Proposition r r_TJfi 
# ;"; llr"Tif#ffi 

cases :

- << = <gand E is a dual Banach space.

441
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See Corollary 6.3 above.

IfE is a regularly ordered Banach space, then

Z (D : {T I T e L(E,q, -q.I < T <a/ for a suitable a > 0}'

This case was first considered by Wils [Wi] who noticed also the connection

with the notion of center of a C - algebra.
The following special case is very ittumillaq_g-. L*elsbe-a3o4qnact Hausdorff

.ou". ana i e zle6, R.))- i.e. T e L(C(S, R), c(^S, IR)) and 0 < r < crl for some

Ji O. *" shall ihoiv thit'iisamultipliiri.e., Iis of the form Ix: q'x.forsome
o ig< oin c(s, R). In fact, foreachie 

^s, 
the frurctional{: x + (Ix)(s) satisfies

the inequality

l4(x) I < cr l-r(s) l, .r e C(S' IR)

which yields a <p(s) e [0,cr] such that {(x) = q(s)'r(s) for all .x € C(^t' IR); I belongs

to C(S, IR) because g: f(1). Consequently the map

Q:Zo(C(S,lR))+c(s,R)

given by O(I) : I(1) is an algebraic lattice and isomehic isomorphism. Notice

also that Z"(C(S,IR)) = Z!^(C(l,lR). 
-

7.7 ;j;1uut. Let E 6e a Banach lattice and T e Z (E),.ThenlTxl= Ilxlfor
everyxe Ei.e.,T is a latticemorphism. o

' 
Proof. By hypotheses, there exists an cr > 0 such that 0 < T < o.I. see also

Lemma t.o. rnen-olxl : I Txl+ lax - Txl< zlrl+ (o/- Dlxl: €llrl which yields

lTxl:4.r1 for every xe E.l' 
An eiement u> 0 of aBanach lattice E is said to be quasi-interior provided

that E,is dense in E. If uis quasi-interior, then the map T -> TlE il an lq*rt"
lattice isomorphisrn trom Z(E) onto Z(E"). Since d is a space C(S' R) we infer that

Z 
"(q 

+ E, as Banach lattices. Consequently

Z"(LP(!L, R)) = tr'(p,lR)

for every positive finite measure p and every p e [l,m]. Notice also that

Zr(Lt(tt, R)): Z"(I|(H, IR)).

Since 0*(2,IR) and 01(2, IR) are isometric Banach spaces,

ZLQ-(2,R)) = ZLQ,(Z,R)) : Z"CI'(2, R)) - 0-(2, IR)

and Z ;!,1*(2, IR)) = 4-(2, IR).

8. CUNNINGHAM PROJESIIONS

The aim of this section is to discuss a class of idempotents canonically

associated to a given A4-order relation ( on a Banach space E'

8.1 Definitiorz. A projection P e L(E,q is said to be a (<< -) Crnnningham

projection provided that Px << r for every xe E-
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The image_s of (( ) cunningham projections will be called (< -) summands.
clearly, 0 an{.I_are cunningham projections. By AEI), if p is a.cunningham
projection so is .l-P.

we shall denote by tr(E) the set of all (< ) cunningham projections on E;
sub-scripts should be used in order to avoid any confusion.

8.2 PRoposITIoN. The cunningham projections on E are precisely the
idempotents of Z(Q. t

Proof. If P e _tr(E), then P << 1 and thus P is an idempotent of Z(E).
conversely, let P e z(E): c(o, IK) such that fD = P. Then p is the characteristic
fimctionofan open-and-closed subsetl of o. ByLemma4.4above,since 0 .xn.l,
it follows that P: Xt(( I in Z(E).

_ The predecess6rs of our definition are the L and M - projections inhoduced
by Culn_ingham. {nryjeclion P 9 L(E,E) is said to bi an L-projection if
llxll_:|||"lL*ll.x-_PxllandM-projectionif ll.rll=llprllvllx -Prllforevery
x e E. cleqly, ther-prolgctions and the <<r-nrojectioni coincid6. The conespond-
ing result for <;is stated below:

8.3 PnoposITIoN. Let cp be an isometric vector norm with RDp on the
Banacl space E and let P e L(E,E) a projection. Then thefollowing assertions are
equivalent;

i) P rs eil 11a..-projection;
ii) q(Px + yI'< qft + y) v qg)for every xy e E;
iii) 9(.x) : q(Pr) v 9(.r - Px) for every x e E.
Proof. Clearly, i) <+ ii) and iii) + ii;.
ii) =+ iii). Notice first that g(Px), <fix - Px) < q(x) for every x e E. On the

oth91hand, q(Pr1 Q-P)v)tgo+ P(x-v)< q(v) v 9(.r) for every x,yed, which
yields g(x) : q(P2x + (I-P)'zx) < q(Pr) v 9(.r - Px) for everyr e 8.7

Other examples of Cunningham projections are indicated below.
8.4 PnoposlTroN. Let E be a Banach lattice. Then the <<o- cunningham

projections on E are precisely the band projections on E.
Recall that a band projection on.E is any positive projection p on E such

that f.r - Pxf n lPyl = 0 for every xy e E.
Proof.Clearly, the band projections are (^ - Cunningham projections.
Let P be a << - - cunningham projection. Bflemm a 7 .7, p and I - p arerattice

morphisms so thatin order t6 estatitisir the relation 
I 
i: iriitpil : 0 it suffices to

consider the case where r 2 0 andy > 0. Or, in the later case,

0<(x-Px)nPy<PyelmP
0 <(x - Px) nPySx-Pxe KerP

which yields (x - Pr) n Py = 0. I
8.5 PnoposITIoN. Let H be a Hilbert space and ,/ the von Neuntann

algebra generated by a self-adjoint operator A e L(H, I{). Then the <<.o- Cunningham
projections are precisely the orthogonal projections belonging to ,.{.

Proof.LetP ePJn. Then for every x e .I/there exists aB e,-{such that
0 < B < I and Px:.8x. Consequently P: P' and P belongs to the wo - closure
of ,,{i.e. to &.

The converse is clear. r
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One can prove (see IIE'J) that the M-summands of any von Neumann algelra

,-{ are the weak closed trpo-sided ideals of ,.4. The following two results describe

geometric prop erties o f Cunningham proj ections'

8.6 PnoposntoN. Let P bb a << - Cunningham proiection on E. Then P maps

every << - facial corye C of E into a << - facial cone !(q contained C'

By Lemma4.l, eitherP(C)= C orP(Q c Fr C.

8.7 PnoposITION. E ery two << - Cunningham proiections commute.

iroof. The image of every < - Cunningham projection is < - hereditary. In

fact,yo12 I-f yiJtAs (I-P)y<<(I-P)x= 0, so thaty: PyelmP. Since the
-unninglta^ projictions'leave invariant the hereditary lones' for each two

Cu*inirtu-projictions P and p on E we hTve !Q(D .^.0!9i.9,, pQ: APA Py
r"pfu"itig g uitni - p we obtain also that P(/- Q) = (l - OP(I - Q) i'e', QP = QPQ'

ConsequentlY PQ= QP. I- - iie foliolfr'ng 6sult shows that Cunningham projections are IR - determined.

8.8 PRoposnloN' Let E be a complex Banqch space endowed with an

AE-order relation <<. Then E and E u, the underlying real space, have the same

<< - Cunningham projections and thii the same <<' summands'- i;""7 It suffices to showthatif Pe_L(Eu, E*) is a << - Cunningham

projection then P(iPx) : i P(r) for everyxe E'
' ' Fornotice that tiemap Q:.r+-iP(i-x) defines a<< - Cunninghamprojections

commute, P(iP(ix)) : iP(iP(-r) for everyxe E'

Given.r e'E,'put y,: i'r'+ iP(iP(-r)) = -i[iP(-r) - P(iP(x))]. TIT fv* 
: r,1nd

P(iy):0. Therefore y,': P(y,+ i y,)-<_(l + i)y,, so by Corollary- 1.'4 it follows that

ii:br, < 2y,. Conseqient[i:ir, :-G!)U,-tv,).uz(t-p)v':0 i'e', v.,.= 0'l
8.9 pRopostTl6N. A-cloied iubspice F'of E is a << - summand if and only

if there exists a closed subspace G of E (h fa_ct G: f , such that E = F
@ G algebraically and x ll y "for every x e E and y e G',

Froof.In fact, if F i; ihe image of the < - Cunningham projection P on E,

then we can choose G : (I - P)(E): P(qa. Conversely, the natural p{oJjg-

tionp: F@ G -+ F islineaiand satisfies the condition P < /i.e', P is
a << - Cunningham Projection . I

In g"n"il, the complementary set Fi of a subspac: F may-be not a subspace'

If p is abunningham projection then P(q'= (I - n(q i.e., the complementary

""t;.il%Tl#rT.Xt:"2,"WX1'- summand of E. rhen there exists a unique

<< - projection P on E whose range is F'
8.1 1 PnOpOSITION. The foTlowing assertiotts are equi,-alent for F a closed

subspace of E:
i) .F'rs a << - summand;
ii) F satisfies thefollowing two conditions:

ii,ylni.ri decomposition-property) . If h < 4 * v in E and h e F then there

existj ind k irt F such that h = i + \i << u, k << v;
'ii^\ For eachxe E thesit 11tlye F,y <<x\ has al'u'b' in F'
iiij F s at*fes the conditions ii; A i!) otove and abo the interpolation property

1i.e.,ifi,,t rrriirlm,ne F andxe'b thei'thereaists ap e F suchthatm,n <<p <<x).
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Proof. Clearly, i) :+ iii) and iii) =+ ii).
ii) =+i). For.reZpg!Pr=:up.{-ylye F_ry<<xl. Thenx -PxeFr. Infact,

if the conbary is true then it would exist a z e F,'z I osuch that z << x - px. since z
<<x- Px,l, n, and-r- Px <<x it follows thatzr Px<<px,a contradiction.

,F'r is avectorsubspace. In fact, letu,ve Fa and xe F with.r <<u* v.
Because 9f tl,) and the fact thatFr is hereditarywe obtain thatx = o ana tnus
u+ve Fa . clearly ue FL and cr e IKimplies ou€ Ft . consequentlyFi is a
vector subspace and the map-P : y+ P4 is-a < - cunningham projectiori. r

For E an order complete Banach lattice and << 
-: ,.o , pioposition g.l I

reads as follorvs
8.12 PnoposrrloN. (see [s2]). Let E be an order complete Banach lattice. A

closed subspace 9of E is a projection band if and only if gis a closed lattice ideal
such that A c. I and sup I : x exists in E implies x e,g.

9. BOOLEAN ALGEBRAS OF PROJECTIONS

Let E be a Banach space. By a Eoolean algebra of projections on E we
mean any Boolean algebra I o.f mutr;g,lly commuting idempbteits of z(de with
respect to the following operations:

PvbP+8-PQ
PnQ:PQ.
PL:I-P.

. A Boolean u!.gyl.rl? of projections on E is said to be equicontinuous
provided that sup {llPll I P e 8) < a.

.l pgolegn algebT Q-of.prglegtions on E is said to be Bade sqmplete
pjovided that for every family (P), of elements of fi there exist v p_ and n p_ infi and moreover s c

("eXr)=ffiya1a;
("a)(r)= 0p"(E)

By Proposition 8.7-al.,ove, the set tr(e of all < - cunningham projections on
EconstitutesaBooleanalgebra. TheseprojectionsParebicon:tractii'einthesense
that llPll< 1 and llzP- Ill<t.
See Propositions 7.1 and 8.1. Particularcases are

P L(D, the Boolean algebra of all I - projections on E;
PM(t), the Boolean algebra of all M -projections on E;

" '""f"{?d::f 
""t."n 

algebra of all band projecrions on E (E is supposed to be

Pr(II), the Boolean algebra ofall orthogonal projections belonging to a com-
mutative von Neumann algebra ,.{ of L(H,II) (F/being a Hilbert space).

PL@) and wa(H) are examples of Bade complete Boolean algebras of
projections. Po(p) is Bade complete provided that E is a Banach lattice with
(a) - continuous norm.

W r{Zl is order complete provided that E is a dual Banach space.
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As a matter of fact, all important examples of Boolean algebraS of projections

come through Alfsen-Eihos thiory via a renorming process described below.

9. t LpUrtfe. Let I be a Bade complete Boolean algebra of projections on E.

ThenP,f PnSimpliesP so >P. , \ 
-.._,_\

pTod Letxe E andlJt e > 0. since r(z)= spanpr"(r)i,*"tt exists indi-- llp'-$'11.".
ces ctr,...,ctn and vectors rl,...,tn such that P^ 'r' = 'r' and lls,'-i '-i---- ll fi,ll
Let cr, > cr1,...,co and put y =tr,' Then P{l) : y and

i=1

llp.(x) - P(x) ll< llP"(x) -yll+ lly - P(x) ll :
= ;;r"(P(x)-r) ll + lly - P(x) ll <2e. I

. 9.2LsMMe. (Bade [B1]; see also [DS], ch.-XV[). ry,.$ be a Boolean

algibra of projectiint tu")h thit for each ieqience (P ,), of fi there exists y \ in

fi. Then fi is equicontinuous.
Given an-equicontinuous Boolean algebra S-of proiections on E we can

consiier the Banach algebra g(g) geieratgd-by-it n t1n,n). G(fi.) is:
commutative B anach atge6ra with unit 1, called the Bade algebra generatedby &l '

By Proposition 8.2, g@(q) c Z(E).

The other inclusion needs additional assumptions. In fact,

g (P o(C(10,1 l, R)) : IR'1 and z"(c([O, I ],lR)) : C([0, 1 ], IR)'

9.3 Letrlve. Suppose that Z(E) is order complete- Then 6(P(Q) : Z(E)'

Proof. By Theorem 7.2, we can identiff Z(E) :w:lth a space C(O, K)' Since

C(o, K) is ordercomplete, the sub algebn,-{(ofall finite sums of the form )ct,xu
where l,' s are muhrally disjoint open-and-closed subsets of O) is norm dense; use

Stone-lteierstrass approiimati-on theorem. Or, & : Span tr(E) and thus

G@(E))= z(E)..' ' Iiis wortirwhile to mention that given an Boolean alg ebra fi of eqwcontinuous

projections on E, the maP

.r + ll.rll, = sup{llPxll, ll2Px - xlll P efil
is an equivalent norm on E and each P e I is abicontractive projection on (E ll llt),

supporc now that fi \" gBoolean algeb-ry of bicontractive projectiolt o^n {
and,S is^tfre Stone space of fi; fi is isomorphic to the Bo_olean ulg.blP A of.all
olen-and-closed subsets of the compact Hausdorffsp.age {. Fot A e 9, we shall

Ainot. by P, the corresponding projection in 91. Coniider the linear span l, of all

characterisfit functions X1, for A e A. For each/e L,-f * 0, can be represented

uniquely as a finite sum/ =Zo,Xn,, where the sets A,e Q are mutually disjoint

and non empty. The maPPing

O:tr+SPan,%
given by

o(I",r1) =Lo,P^,
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belongs to e( andthus it is a <9 - Cunningham projection. Since (HS) yields

l= It"""
{^,"irrl}

is the norm topology of L(H,n, it follows tl:.ort A e Re Z$I\
It is remarkable that the result above remains valid in the general setting.

10. 1 HILBERT-SCIIIMDT CENERALIZED THEoREM. i) Let E be a Banach space

endowed with an AE-order relation <<, Such that the norm of E is <<' continuous.

Then for every compact operator A e Re Z(E) there exist a real sequettce (an) ne oo

and a sequence (a,),of mutually disiointfinite rank Cunningham projections on E

such that e(x)=lo.,r,(x) for every xe E.

ii) Coiiers$, ev"ry op"rotor A e L(E,q that admits such a representation

is compact and beiongs toFte Z(Q.
ihe assertion ii) is an easy consequence of axiom AB[). In fact, it suffices to

consider repres entations
A(r)=lo-,P,(x)

where (ct,), e (o.)* and (P^)^ are requencet of mutually disjoint finite rank

Cunningham projections. Then by ABI)'

ll 
no - t",q(") ll 

= 
ll t,",*0 ll 

.

for every n e IN andxe E.--- - 
ffi. assertion i) will be obtrained by cutting I in smaller pieces' We shall

need the following sfecial case of Glicksberg - deleeuw decompositton theorem

(see [Kr], 2.4.4, for the general case):' - 
10.2 LfUUe. Supposp that E is endowed with an AE-order relation <<,

that makes the norm of E <\- continuous. Let A e Re Z(Q, withllA_ll< 1..lhey
(A,)- converges stronily to a Cunningham proiection P such that PA: AP: P
and"ImP = Ker (I - A).

proof. By Theorem 7 .2 ii) above, we have I << .L Since the norm of E is < -

continuous, the limit Px = ]ry5A'x exists for each x e E. That gives raise to an

operator p such that P < /. We Jlall show that P is also a projection (and thus it is

a cunningharn projection). For -r e E and e > 0 given, choose an n e IN for which

llArx -Pxll < e/3 and lV4^Px- P2xll < e/3

if k, nt'2 n. Then

llP, -Pxll < llP?, - A'Pxll+ llA'Px - A'A'xll+
+llA'A'Px -Pxll<

<el3+el3*e/3=e,
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which yields the fact that P2': P. The others assertions in the statement of Lemma
I 0.2 are strai ghtforward.

10.3 ConorLARY. Under the above assumptions on E, for each compact
nonnull operator A inRe Z(E) there exists afinite rank nonnull Cunningham pro-
jection P such that PA: AP = P and Im P = Ker (lll ll.I - A).

Proof. By Theorem 7 .2 ii) above, we have AlllA ll << /, so the existence of P
is assured by Lemma 10.2. Since I is compact and self-adjoint, lll ll is an
eigenvalue and thus ImP + {0}. P is finite rank, as being compact. I

Now, to derive assertion i) in Theorem 10.1 from Corollary 10.3, we have to
choose d.o: llA lland Po: P. Because A: AP + A(I - P): q J?o+ A(I - P) the
cutting procedure will continue by replacingAby A(I - Pr).

An altemative proof of Theorem 10.1 can be found in [N5].
By combining Theorems 5.10 and l0.l we obtain the following:
10.4 PRoPosITIoN. Under the assumptiotrs of Theorem 10.1,

_rmA= ffi[(rm e)n@xo)]
In other words, Iml is generated by its < - extreme points.
10.5 Conor,rnnv. If E has << - continuous nonn and Z*(D contains a compact

nonnull operator, thenExoE is nonempty.
Since Zt[0,1] has no atom, from Corollary 10.5 we infer that the only

compact operator I : ^Lt[O, 1] + Zt[0, 1] with 0 < I < 
^I is T = 0.

The converse of Corollary 10.5 is false. Think at the case where
E = L2[0,1] and <<: <9.

Suppose now E is a Banach lattice whose order intervals [0'r] are compact.
Then a result due to Walsh [Wh] asserts that E is discrete (i.e., it has an uncondi-
tional basis consisting of atoms). To derive this fact from Theorem l0.l it suffices
to restrict ourseves to the separable case and to remark the existence of a positive
element u in E and of a compact operator I in L(E,E) such that

A natural question arising in this setting is the following:
10.6 Problem. Let E be a Banach space endowed with an AE-order relation

<< andletz e E such that the << - order interval [0, z] is compact. Can each.r e C(z)
be represented as an unconditional convergent series

x=lcn"o

with cn > 0 and ene Ex E fi C(z) suitably chosen?

The classical Hilbert-Schmidt theorem covers all orthonormal expansions
because every orthonormal basis of a Hilbert space arises as the fundamental sys-
tern of eigenvectors of a suitrable self - adjoint compact op erator A e L(H,I{).What
type of decomposition Theorem l0.l yields?

Under the assumptions of Theorem 10.1, E = GA (E Kerl constitutes an

unconditional decomposition of lattice constant I and the subsequent
decomposition of lm,q I constitutes an unconditionally finite dimensional
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decomposition of lattice constant l. That is explained in [N5]. One can provg tha!
(via a ienorming process) all complemented subspaces having an unconditional
inite dimensionaldecomposition arise in this way i.e., via Alfsen - Effros theory.

our final remark is that one can rephrase Theorem 10.1 in terms
independent ofany order-theoretical structure. In fact, by Theorem 9.5, it can

be restated as follows:
10.7 THEoREM. Let I be a Bade complete Boolean algebra of projections

on the Banach space E and let A e E(8) a compact operator. Then there exist

a sequence (cr,)" e co and a sequence (P^), of iinite rank mutually disjoirzt

projections in such that

A=lonP,.

in the norm topologt of L(E,E).
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